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Abstract—A critical review is conducted based on analytical simulations of an 
experimental study to measure change in weight of sheep upon death published 
in 2001 by L. E. Hollander in JSE. The experimental system is modeled as 
a single-degree-of-freedom vibrating system. The following conclusions are 
obtained. (1) The experimental result obtained with Sheep #7 appears to be 
natural, as expected by the theoretical model. (2) Hollander’s conclusion that 
“there was a transient gain of weight of 780 grams” in the case of Sheep #7 is not 
an appropriate expression of the experimental result, because the 780  gf pulse 
includes an overshoot reaction of the system; however, the cause of the force 
event remains to be explained. Analytical simulation of a supposed weight 
measurement experiment involving an out-of-body experience (OBE) subject 
is carried out using the theoretical model under a supposed weight decrease of 
the experient. The simulation showed that the disturbance caused by breathing 
becomes the primary noise in the system response. However, some noise reduc-
tion techniques can be used to discern the change in the weight of the experient, 
if there indeed is a weight decrease. Weight measurement experiments using a 
trance channeler are suggested because “trance channeling” is objectively more 
observable than OBE.

Keywords:  critical review—analytical simulation of experiment—transient 
weight gains—death of sheep—analytical model of vibration—
overshoot reaction—disturbances due to cardiac and breathing 
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OBE—suggested experiments with trance channeler

1. Introduction and Objectives

It has been a little over 100 years since the paper by Duncan MacDougall, MD, 
was published concerning an experimental study of the change in the weight of 
the human body in life-to-death transition [1]. Since then, there have been several 
skeptical as well as critical arguments against MacDougall’s paper, specifi cally 
those expressed in books by a psychologist (Susan Blackmore, 1982) [2] and a 
scientist (Len Fisher, 2004) [3]. Similar skeptical arguments are posted on many 
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Web sites. Most of these arguments are similar, stating how “his experiment was 
sloppy; his claimed weight of the soul turned out to be simply the result of sloppy 
science; his experiment was silly, you’d need not just a scale, but a completely 
isolated system.” From a scientifi c point of view, it can be shown with relative 
ease that none of these criticisms have a quantitative basis. For example, Len 
Fisher’s speculation [3] of “convection currents” of air to explain the missing 21  g 
requires an updraft ranging from 40 to 55  cm/s against the whole fl at bottom area 
(assuming that it is in the range from 2 to 1  m2, respectively) of MacDougall’s cot 
bed on the scale platform (this can be easily shown based on a stagnation-point 
fl ow model using the Bernoulli equation [4]). Inducing such an air velocity of a 
natural-convection updraft requires, for example, an array of heated vertical plates 
with a height of 1 ft covering the entire fl at bottom area with a temperature that 
exceeds the ambient air temperature by more than 90°C (experimental data can be 
found in McAdams [5]), depending upon the shape and size of the heated plates. 
Contrary to this thermo-hydraulic reasoning, Fisher speculates that the convection 
currents may be induced by (not an increase, but) a “decrease” in the patient’s 
body temperature upon death. Indeed, it will be very diffi cult to scientifi cally 
refute the missing weights in MacDougall’s experiment, even though his experi-
ment, conducted around 100 years ago, may appear sloppy from the viewpoint of 
today’s scientifi c standards.

Apparently, Lewis Hollander’s paper published in the Journal of Scientifi c 
Exploration [6] was stimulated by the 100-year-old MacDougall paper. Although 
the author writes that the study is very much preliminary, it is felt that a technical 
review of his experimental results is necessary, and this is the primary motivation 
for the present paper. In addition, in this paper, an analytical simulation of the 
probable responses of Hollander’s weighing system will be shown in a supposed 
weight measurement experiment of a subject during his/her out-of-body 
experiences (OBEs) to understand the diffi culties, if any, in such experiments.

2. Trial Simulation of Hollander’s Experiment

2.1. Characteristic Parameters of Weighing System

One of the best ways to understand the experimental results is to carry out a 
simulation of the experiment by using a simple analytical model for the experi-
mental weighing system. Although Hollander’s paper gives very little information 
on the experimental system, a mathematical model of vibration based on a single 
degree of freedom can be created for the weighing system using data available 
from the paper. The basic equation of the model of damped vibration for a mass 
“m” under an externally applied force can be expressed as follows (see standard 
text books on physics or vibration engineering, e.g., [7]):

′′ ′x x x F t mn+ + =2 2s v ( ) / ,  (1)

where
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 x =  small displacement (in meters) of the mass from its equilibrium posi-
tion (x  =  0); xq and xp are the time derivatives of x, i.e., acceleration 
and velocity, respectively; the positive direction of “x” is defi ned here 
as vertically downward, along the direction of gravity;

 s = vibration decay rate (1/s);
vn(=keq /m)0.5  =  natural angular frequency of the system (rad/s);
 keq = equivalent spring constant of the system (N/m);
 F(t) =  time (t) dependent external force applied to the system, expressed as 

Foxf(t) with dimensionless function f(t) and normalization force fac-
tor Fo (N);

 m =  mass (kg) of the system, which is supposed to be constant throughout 
the experiment.

This mathematical model is intended to predict only the small vibration 
behavior of the mass with respect to its equilibrium position by an action of an 
external force applied to the system. The model is not intended to predict the 
change in the weight of the system. If there is a small change in the mass “m,” the 
effect may be expressed as an external force F(t) that simulates the removal or 
addition of the corresponding load. The assumption of constancy of mass “m” 
above is an approximation of the model; in other words, a small decrease (Dm) in 
“m” (due to the loss of moisture evaporating from the animal bodies, as reported 
in Hollander [6]), in comparison to the initial mass (m0), shall not considerably 
affect the vibration behavior of the weighing system. In the experiment, Dm 
was less than 0.1% of the initial mass, m0. The experimental quantity “Weight in 
Kilograms” expressed in the ordinate of the fi gures in Hollander’s paper may be 
related to the “x(t)” of Equation 1 as follows:

keqxx(t)  =  change in weight at time “t” from its equilibrium weight.

The “Weight in Kilograms” expressed in the ordinate of, for example, 
Figure 2 of Hollander will be equated to “keq  x  x(t)”  +  equilibrium weight of 
the system at time “t.” (Here, the term “equilibrium” indicates that the system is 
not in motion.) But this reasoning is scientifi cally wrong unless the mass of the 
system is not in motion at time “t.” Hence, the physical quantity “keq  x  x(t)” will 
be denoted as a “system response,” which can still be compared with the experi-
mental vibration behaviors shown in the fi gures in Hollander [6]. The characteris-
tic parameters of system vibration will be estimated in the subsequent sections.

(1) Weight of system (Mp) without animal subject. Hollander reports that the 
system consists of a platform (size: 215x92  cm) on a steel frame, which is set on 
four load cells of 45-kg capacity each; hence, the maximum allowable load on the 
load cells will be 180  kg. According to the paper, “the full-scale capacity of the 
system was 100  kg, with a sensitivity of −5  gm”; from this, the total weight of 
the steel frame and platform without an experimental animal subject on the 
platform is assumed to be Mp  =  80  kg (maximum). The total mass of the system 
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“m” in Equation 1 becomes “Mp  +  msp,” where msp is the mass of the experimen-
tal animal subject on the platform. It was reported in the paper that “the measured 
response time of the system was 0.2 seconds,” which may be taken to indicate that 
any details of a force event occurring within 0.2  s will not be reliably recorded by 
the weighing system.

(2) Characteristic parameters of vibration of system. The natural angular 
frequency of the system (vn) with experimental subject Sheep #7 (msp  =  70.2  kg) 
on the platform will be estimated from the damped free vibration behavior of the 
system shown in Hollander’s Figure  2. The vibration pattern is shown in the fi gure 
with a period of about Td  =  1.9  s during the time period from about 56 to 71  s 
during transience, which gives the angular frequency of damped free vibration, 
vd(=2p/Td)  =  3.31  rad/s.

This damped vibration behavior also gives the vibration decay rate “s” of the 
system. The logarithmic decrease in the damped vibration, d  =  ln(xn−1/xn), will 
be estimated as 0.263 from the fi gure by fi tting six to seven xn data points, where 
xn’s are the peak amplitudes of successive damped vibrations from the equilibri-
um value. Using the relationships d   = vn x f x Td and vd  =  vn x (1-f

2)0.5, 
where f is the viscous damping factor, these parameters can be estimated to be

vn  =  3.31 (rad/s),

f  =  0.042 (−), and

s  =  vnxf  =  0.138 (1/s).

vn is almost equal to vd because of the small f value. These parameters are 
specifi c to the case of the experiment with Sheep #7. The angular frequency, vn, 
is related to the equivalent “spring constant” of the system as follows:

vn eq p sp eq p sp pk M m k M m M2 1= + = +/( ) ( / ) /( / ),

where

 keq = equivalent spring constant of the system (N/m),
 Mp = mass of the system as defi ned above (=80.0  kg),
 msp = mass of the experimental subject (kg).

The equivalent spring constant is calculated as keq  =  Mp  x  vn
2  x  (1  + 

msp/Mp)  =  1.646  x  103  N/m. The natural angular frequency (vo) of the system 
without an experimental subject on the platform and vn (with an experimental 
subject on the platform) are related to each other as follows:

v
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Then vo becomes 4.54 rad/s.
Although these characteristic parameters (keq, s, f) of the natural vibration 

of the system have been estimated from the result of the case of Sheep #7, it 
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is assumed that these are also applicable to other experimental cases. These 
characteristic parameters of the weighing system can be and should be determined 
experimentally fi rst by disturbing the system using an inert mass instead of plac-
ing a live animal on the platform. These parameters provide essential information 
when the experimental results are interpreted.

The linear differential Equation 1 can be solved numerically by using the 
Euler-Romberg method after expressing the equation in a non-dimensional form 
by introducing non-dimensional time “t” (t  w  t/To, To  w  2p/vn) and displace-
ment “X” (X  w  x/xo, xo  w  To

2  x  Fo/m). A computer program (with double pre-
cision in FORTRAN 77 on a PC) for the numerical solution has been created for 
this study. The program has been validated by comparing its numerical solutions 
with the analytical solutions for several sample problems easily available in text 
books of physics or vibration engineering. In what follows, numerical simulations 
of several supposed problems are carried out to elucidate the signifi cances of 
Hollander’s experiment.

2.2. Simulation of “Missing 21 Grams” with Weighing System

First, let us suppose that the fi rst case of MacDougall’s experiment is con-
ducted using Hollander’s system. According to MacDougall’s paper [1], the loss 
of 21  g on his platform scale was observed “in a few seconds” after the judgment 
of patient death. Here, let us suppose the following three simplifi ed modes of 
weight decrease in “the few seconds”:

(a) instantaneous decrease,
(b) decrease in 1.5  s at constant rate, and
(c) decrease in 3  s at constant rate.

The initial weight of the patient is arbitrarily assumed to be 62.0  kg (which is 
the present author’s weight). The system is supposed to initially be at an equilib-
rium state without motion, which means that any disturbance caused by the live 
patient before death is neglected. The time of death is supposed to be 5  s into the 
transient for this calculation. Fo in Equation 1 becomes −0.2058  N (which is 
−21  gf) and f(t) is determined for each mode of the weight decrease history. The 
calculated system responses to the three modes of weight decrease are shown in 
Figure  1 as a function of time.

All three cases fi nally stabilize at a loss of 21  g in about 35  s since the start of 
the decrease. The system, however, responds differently depending upon the rate 
of decrease. The vibration of the weighing system (or “ringing” of the load cells) 
is largest in the case of an instantaneous decrease, in which case, of course, we do 
not say that there was a “transient weight loss” of 40  g initially in the transient. 
The large swing beyond 21  g is just an overshoot of the system responding to 
the fast loss of the small load. If the decrease occurs slowly, the overshoot will 
become small, as in the case of mode (c). Regardless of the mode of the weight 
decrease, the system settles in the same new equilibrium state with the system 
mass decreasing by 21  g from the initial state.
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This parametric case has been chosen to show that Hollander’s writing of 
“weight gain transient of 780 grams for 4 seconds” in the case of Sheep #7 in his 
paper [6] is not an appropriate expression; the “weight gain transient” includes 
some overshoot vibration of the system! The mentioned “transient gain of 780 
grams” in his Figure 2 apparently shows only a small undershoot of the system, 
and this might have led to Hollander’s expression. However, we can make a case 
with no undershoot and a case with small undershoot after a large single pulse, in 
which a square impulse of an external force is imposed on a system with time 
width DT  =  2p/vn  =  1.897  s and vibration decay rate s  =  0.0 and 0.138/s, 
respectively. These are considered to be parametric cases of simulation of 
Hollander’s experiment, as discussed in Sec. 2.3 with Sheep #7 with an initial 
weight of 70.2  kg.

Figure 2 shows the system responses with and without damping to the imposed 
square impulse. In the case without damping (s  =  0), the impulse of height Fo 
(415.4  gf) with width DT  =  2p/vn gives a peak pulse height of 831  gf, which is 
exactly two times the impulse height Fo. This case has the analytical solution to 
the problem (with the start of impulse at t  =  0), the peak amplitude of which 
after impulse (t  >  DT  =  2p/vn) is proportional to sin(vnDT/2); hence, the 
amplitude becomes zero for DT  =  2p/vn. During the impulse (0  <  t  <  DT  =  2p/
vn), the analytical solution is given as Fo  x  (1  -  cos[vnt]); hence, the peak 
height becomes 2  x  Fo at t  =  DT/2  =  p/vn. One may wonder why the mechani-
cal work done by giving impulse to the system disappears after the impulse, 
t  >  DT  =  2p/vn. Actually, the positive work (which is defi ned as IFodx, with 
displacement “dx[t]” in the positive direction) performed by the impulse during 

Fig. 1. System responses to three modes of 21  g decrease.
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the fi rst half of the impulse is canceled out by the negative work (due to displace-
ment “dx[t]” in the negative direction, i.e., deceleration of motion) performed 
during the last half of the impulse, and the system settles in equilibrium of no 
motion at the end of the impulse. In the case with damped vibration (s  =  0.138/
s), the peak height becomes 780  gf (with the intentionally specifi ed impulse height 
Fo  =  415.4  gf). Because of damping (i.e., energy dissipation), the maximum 
height of the peak becomes less than 2 x Fo. The amplitude of the vibration after 
the impulse is relatively small because of the specifi ed impulse width DT  =  2p/
vn. These system responses have nothing to do with “contradiction” to or “viola-
tion” of Newton’s third law of motion (as mentioned in [6]); they are the results of 
Newton’s three laws of motion.

Although these cases have been intentionally created, the results show an over-
shoot to 780  gf or more under the action of a square impulse of 415.4  gf (4.073 N) 
height. Hence, we cannot say that there was a “weight gain transient of 780 grams” 
in the case with Sheep #7 in Hollander’s experiment. The actual impulse height 
that caused the 780  gf might have been only 415  gf in the experiment, the cause 
of which is yet to be determined. It is not a “weight gain transient of 780 grams,” 
but a “force impulse giving a transient pulse of 780 gram-force” in the system 
response. Any change in weight can be concluded only when the weighing system 
has settled in an equilibrium state, although this is an idealized condition. Further, 
although the width of the 780  gf pulse is depicted as 4  s in Hollander’s Figure 2, 
it appears to be only about 2.6  s. Which of these values is correct? The question 
can similarly be posed for his Figure 3.

Fig. 2. System response to imposed square impulse with or without damping.
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2.3. Simulation of Hollander’s Experiment for Interpretation of Results

Many questions can be raised about the experimental results reported in 
Hollander [6]. Some of them are as follows:

(a)  Why did the typical vibration behavior recorded in the case with Sheep #7 
(in his Figure 2), apart from its amplitude, not appear in the cases with 
Sheep #3 and #8 (in his Figures 1 and 3, respectively)? What caused the 
strange vibration pattern in the Sheep #8 case with 21 data points sampled 
per second as in the Sheep #7 case? Did the system function normally in 
the two cases with Sheep #3 and #8?

(b) What was the cause of the 780  gf peak pulse in the Sheep #7 case?
(c)  Can we see any effects of breathing and cardiac activities on the system 

response in the case of Sheep #7?

These questions will be addressed in the following simulations.

2.3.1. Simulation of Case with Sheep #7

(1) Events that affect weighing system. Any movement, whether visible exter-
nally or not, of the experimental subject on the platform will affect the weighing 
system. Breathing and cardiac activities as external forces acting on the system 
may be specifi ed by the following parameters:

(a) angular frequency, vext, and
(b) amplitude of disturbances.

According to the paper [6], the cardiac frequency of the subjects changed 
transiently from a normal value of 70 to a rapid crisis value of 120 beats per 
minute, values that correspond to frequencies of f  =  1.167 and 2.0  Hz, respec-
tively. These frequencies correspond to an angular frequency vc  =  2p  x  f of 7.3 
and 12.5 rad/s, respectively, both of which are more than two times higher than the 
natural vibration frequency of the system, vn  =  3.31  rad/s. The paper provides no 
information on the breathing frequency of the subjects. According to biological 
data presented in a science handbook [8], the normal breathing frequency of sheep 
is in the range of 16 to 24 breaths per minute, which gives an angular frequency 
ranging from 1.7 to 2.5  rad/s. If the breathing frequency of Sheep #7 at crisis 
is assumed to be 30 breaths per minute, the angular frequency becomes 
vb  =  3.14  rad/s, which is very close to the natural frequency of the system. These 
angular frequencies of cardiac activity and breathing indicate that in the experi-
ments, breathing activity might have affected the system response much more 
than cardiac activity.

As regards the amplitudes (Fo) of these disturbances as external force Fo  x  f(t), 
we do not have much information at hand. The amplitudes will be treated as 
parameters in the simulations. Hollander [6] writes in the “Discussion” of his 
paper that “The normal breathing appears as a rhythmic series of inertial weight 
gains followed by corresponding losses,” which may suggest that “the inertial 
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weight gains and losses” are due to air mass inhaled and exhaled by the lungs of 
sheep. If this is the intended meaning of the author, however, it is not correct, 
because the amplitude of vibrations (about 300  gf in the case of Sheep #7) is 
far greater than the effect of the change in air mass. The inhaled/exhaled mass of 
atmospheric air per “normal” breath of sheep never exceeds 1  g (it may be about 
0.6  g at most based on the air volume per breath, as given in the science handbook 
[8]; see Table A1 in the Appendix). The disturbances in Hollander’s Figure 2 
persisted up to the last breath of Sheep #7, and they might have been caused by 
body sway accompanied with breathing in crisis.

According to Hollander (Figure  2) (and others), there might have been a 
remarkable disturbance during the last breath of the subjects. This disturbance 
may be simulated with a triangular impulse with a width of 1 second at the 
bottom. The amplitude will be treated as a parameter. The last sporadic distur-
bance after the last breath of the subject will be simulated with a square impulse, 
as discussed in Sec. 2.2. It is assumed in the calculation that the weighing system 
is initially at equilibrium state without motion. The reported evaporation of 
moisture from the animal subject during the experiment is not included in the 
simulation; hence, the simulation is intended only to observe the vibration 
behavior of the weighing system with an experimental subject of constant weight 
on the platform.

The time step size for the numerical solution is constant, about 7 ms, although 
the Euler-Romberg algorithm automatically cuts down the size until a required 
convergence criterion is satisfi ed. The convergence criterion used for the change 
of solutions (for dimensionless displacement and velocity) in successive iterations 
is 10−7, which corresponds to a convergence in 0.01% for displacement (x) and in 
less than 0.01% for velocity (xp).

(2) Results of simulation. A simulation of the experiment with Sheep #7 is 
shown in Figure 3a and b. In the calculation, the cardiac vibration effect was 
modeled by using the vertical component (Fy) of the cardiac activity force (CAF) 
of humans reported in an experimental paper by Silvia Conforto et al. [9]. This 
application of human cardiac data is simply due to the lack of sheep data. The 
heart rate is assumed to be constant at 80 beats per minute and the heart is 
assumed to arbitrarily stop at 45  s (7  s after the last breath) into the transient. 
The breathing frequency is arbitrarily assumed to be constant at a crisis rate of 
30 breaths per minute and it is assumed to stop at 38  s based on Hollander’s 
Figure  2. The external disturbance caused by breathing is expressed by 
Aoxcos(vbt), where vb is the angular frequency of breathing with amplitude Ao 
(=0.345 N); this gives a vibration amplitude similar to that of the experiment. 
The disturbances assumed in the calculation at the last breath and after the 
stoppage of breathing will be explained in the calculated results.

Figure  3a shows the superposed external disturbance (Foxf[t]) assumed in the 
simulation with no disturbance after the square impulse. The high frequency 
disturbance caused by cardiac activity from the start to 38  s is modulated by the 
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Fig. 3a. All external disturbances superposed in the simulation of the case with Sheep #7.
Fig. 3b. Simulation of case with Sheep #7.

lower frequency disturbance (Aoxcos[vbt]) caused by breathing. The triangular 
impulse from 37 to 38  s reaches a maximum value of 4.04  N at 38  s (also adjusted 
to give a vibration amplitude similar to that of the experiment); the cardiac distur-
bance is superposed on the triangular impulse. The bottom width (1  s) of the 
triangular impulse is specifi ed based on the corresponding experimental sharp 
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pulse recorded around the time of the last breath. The disturbance shown from 
38 to 45  s corresponds to the cardiac disturbance (Fy) only, and it shows a 
peak-to-peak swing of about 165  gf. The last square impulse has a width of 2p/vn 
(=1.9  s), as defi ned in Sec. 2.2, and its height is adjusted to 4.3  N to give a peak 
pulse height of 780  gf.

The calculated system response is shown in Figure 3b, which also shows the 
superposed disturbance. The system response from t  =  0 to t  =  37  s (just before 
the triangular impulse) is determined primarily by the breathing disturbance.

The effect of cardiac disturbance is minimal because of the large ratio of the 
angular frequency of the cardiac disturbance (vc: more than 8.4  rad/s) to the 
natural frequency of the system (vn  =  3.31  rad/s). (About 6% of the 165  gf swing 
will be transmitted to the system response, if only Fy disturbance is considered in 
the simulation.) The theory of “vibration isolation” explains these behaviors 
in terms of the “amplifi cation factor for transmissibility,” Hb(vext/vn, f), of 
vibration, where vext/vn and f are the ratio of angular frequency of the external 
disturbance force to the natural one and the viscous damping factor of the system, 
respectively (see Dimarogonas & Haddad [7]). Hb implies that the amplitude of 
the external disturbance vibration (Fo) will be multiplied by the factor Hb in the 
output amplitude of the system response. The frequency ratio for the breathing 
disturbance, vb/vn, becomes 0.95, and that for cardiac disturbance, vext/vn, 
becomes more than 2.5 because of the higher frequency components included in 
one cardiac cycle (according to Fourier analysis of Fy, 2vc, 3vc, 4vc, and 5vc 
have larger weights than the fundamental harmonic vc calculated from the heart 
rate). In breathing disturbance, Hb becomes 7.8 for vb/vn  =  0.95 with f  =  0.042, 
while in cardiac disturbance, Hb  =  0.19 for vc/vn  =  2.5. For a higher harmonic 
component of the cardiac disturbance, for example, 3vc/vn  =  3  x  2.5  =  7.6, 
Hb becomes only 0.02. Hence, Hb roughly indicates the calculated results of the 
disturbance effects on the system response.

In Hollander (Figure 2), we can identify a higher frequency behavior during 
the time from about 19 to 28  s; the frequency is about two times the natural fre-
quency of the system (2xvn  =  2x3.31  rad/s). This means that there was a dis-
turbance of corresponding frequency, to which the weighing system strongly re-
sponded, and this behavior may suggest that the weighing system has another 
component of natural frequency of about 2xvn (which comes much closer to the 
cardiac frequency for 80 beats per minute than vn). This can be expected because 
the weighing system is composed of a two-dimensional plate and frame. However, 
this behavior cannot be simulated by the simplifi ed single-degree-of-freedom 
model. When compared with the experimental result presented in Hollander’s 
Figure 2, the present calculated result (Figure  3b) shows quite a different damped 
vibration after the triangular impulse at the last breath. The calculated damped 
vibration after the last square impulse at about 50  s into the transient appears 
similar to the experimental result. However, this is simply because of the artifi -
cially specifi ed width of the impulse (DT  =  2p/vn), as discussed in Sec. 2.2. If 
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the width is specifi ed wider or narrower than this value, damped vibrations similar 
to those calculated after the last breath will appear. Thus, this computer model can 
simulate only some aspects of the experiment.

(3) Possible cause of last impulse. The time integral of the last square impulse, 
IF(t)dt, used in the calculation above gives a momentum of 8.16  N·s. However, 
half the DT with the same impulse height, that is, an impulse of 4.08  N·s is suffi -
cient to give the 780  gf peak pulse, though the damped vibration after the impulse 
will be different. This can be seen from the analytical solution to the square 
impulse problem with no damping. If a free-fall event is assumed within the body 
of Sheep #7 after its apparent death to give this impulse, what would be the 
requirement with respect to a free fall?

Suppose that a mass “m” starts to fall freely through a vertical distance “h” in 
the gravitational fi eld, and it stops delivering impact within the body when the 
distance is reached. The momentum of the mass at impact can be calculated as 
follows:

m v m gt m ghx = x = x ( ) ,.2 0 5

where v and g are the velocity at the impact and the gravitational constant 
(9.8  m/s2), respectively.

To give an impulse of 4.08  N·s, the mass “m” and falling height “h” must 
satisfy the following relationship:

m v m ghx = x =( ) . ..2 4 080 5
 (3)

If the distance is specifi ed as h=5  cm, the required minimum mass becomes 
m  =  4.1  kg for an impulse of 4.08  N·s. This result may not be consistent with 
Hollander’s statement in his “Discussion” that “[experimentally] this requires a 
movement of several liters of fl uid fl owing relatively unobstructed to achieve a 50 
to 100 gram transient pulse.” This inconsistency between the two arguments may 
be because of the assumed width of the impulse (DT) being p/vn, which gives a 
780-gf peak pulse with a minimum impulse IF(t)dt in the present speculation.

Could such a force event or its equivalent occur in the body of dead sheep? 
Could the ruminant system of sheep, which may contain fl uidized food and 
possible gas accumulated in the process of fermentation of food, be responsible 
for such an event? Although this is just a speculation, we must seek out probable 
causes before concluding the experimental results as being “unexplained.”

2.3.2. Simulation of Other Cases?

Hollander’s paper shows the system responses for the cases with Sheep #3 and 
#8. Simulations of these cases with the present analytical model will provide no 
conclusions because the experimental results shown in his Figures 1 and 3 are 
quite different from the simulation result for Sheep #7. The weight of the experi-
mental subject affects the simulated system response through the change in the 
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natural frequency of the system (vn) and the term “F(t)/m” with different masses 
(msp) of the experimental subjects (see Equations 1 and 2). The vn’s for Sheep #7 
(msp  =  70.2  kg), #3 (88.9  kg), and #8 (92.2  kg) are calculated to be 3.31, 3.12, 
and 3.09  rad/s, respectively, but the present model, with these effects of msp in-
cluded, cannot give the peculiar vibration behaviors recorded in the cases with 
Sheep #3 and #8. Figures 1 and 3, if they experimentally present no problems, 
cannot be expected to be replicated by this simple theoretical model.

According to Hollander (Figure 1), the result with Sheep #3 is “a typical 
example of a transient occurring after the last deep breath and during a period 
of calm, free of any movement”; the result with Sheep #7 is rather exceptional. 
Regardless of the causes of the force impulses appearing in the experimental 
transients, that is, whether they are scientifi cally explainable or “unexplainable,” 
we should suppose that the system responds to the impulses based on physical 
laws. Because the apparent responses of the system are very much peculiar in the 
cases with Sheep #3 and #8, there will be doubts about whether the weighing 
system functioned normally in those cases, including the cases with Sheep #3 and 
#81. Normal functioning of the weighing system can be confi rmed by conducting 
a system response test between successive cases by imparting a test disturbance to 
the system using an inert mass on the platform. Hollander did not mention such a 
test in his paper.

Although Hollander concluded that “there was no permanent weight change at 
death” in every case of the experiment, no reasoning for the conclusion was given. 
Defi nitely, the reported large escape rate of moisture from the subject bodies 
obscured any small anomalous change, if any, of the weight of the subjects upon 
death.

3. Simulation of Supposed Weight Measurement Experiment during OBEs

MacDougall’s missing weights ranged from 10.6 to 70.8 (or 45.8) g [1]2, and 
they have neither been refuted nor proved in the last 100 years. This may support 
the assumption that there is a psycho-physical interaction between the “non-
physical human mind” and the “physical body,” and that part of the energy that 
accompanies the psycho-physical interaction and manifests in the physical dimen-
sion may be weighable in our gravitational fi eld as a mass, DM, through Einstein’s 
equation, DM  =  DE/c2, where DE is the energy manifesting in the physical 
dimension. It should be noted here that when people talk about MacDougall’s 
missing weights, they refer only to “the missing weight in the few seconds,” which 
ranges from 10.6 to 42.5 (or 21.3) g [1], neglecting the additional decreases in 
weight that ensued in up to 18 minutes since the time of their judgment of death. 
(Hollander did so in his paper [6], for example.) The very additional missing 
weights are one of the “notorious points” against which the psychologist Black-
more stated her skepticism [2]. If one doubts the additional missing weights, the 
person should doubt the one observed in the few seconds too. However, unless 
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there is a defi nite refutation of MacDougall’s original results based on a scientifi -
cally quantitative basis, his experimental results should be respected. This is also 
because we do not know as yet the real meaning of “human death,” when we take 
into account research results on “human reincarnation,” for example, that by the 
late Prof. Ian Stevenson (1918–2007) [10].

MacDougall’s experimental results may encourage weight measurement 
experiments in transitions to and from altered states of consciousness to show that 
in the transitions, there may be a violation of the Law of Conservation of Energy, 
which has been one of the most cherished empirical principles of physics.

3.1. Conditions for Simulation

Weight measurement experiments using a system like the one used by 
Hollander, for a physical body of human that is supposed to be left behind during 
OBEs, will be affected by disturbances caused by cardiac activity and body sway 
accompanied with breathing. The objective of the simulation is to clarify technical 
diffi culties, if any, in such experiments. To make the simulation simple, it is 
assumed that the OBE experient is lying supine on the platform of the weighing 
system to minimize possible body sway. Only disturbances caused by the cardiac 
activity and breathing of the experient are taken into account. Based on the results 
of psycho-physiological research on OBE experients, the heart and breathing rates 
during the supposed OBE are assumed to be normal rates expected in the state of 
relaxation, although there are exceptional cases [11]. The normal weight of the 
OBE experient (msp) is assumed to be 62.0  kg.

(1) Cardiac disturbance. According to the science handbook [8], the heart rate 
of a human adult at rest ranges from 64 to 70 beats per minute. Based on this, the 
lower value of the range is selected in the simulation: 64 beats per minute for the 
heart rate.

The cardiac disturbance in the OBE experient lying supine may be expressed 
by the Fx component of the CAF published by Conforto et al. [9]. This component 
is the “frontward-backward” cardiac force obtained from experimental subjects 
standing upright. However, the most predominant CAF is the vertical Fy 
(“upward-downward”) component in [9]; this component showed a peak-to-peak 
swing in the range of 1.3 to 3.0  N, depending on the experimental subjects. To 
maximize the possible cardiac disturbance in the simulation, Fy component with 
a peak-to-peak swing of 3.0  N is used (the Fy component used in Sec. 2.3 for the 
case with Sheep #7 is multiplied by 1.855 to get a peak-to-peak swing of 3.0  N). 
The time history of Fy in [9] is expressed as a function of the percent cardiac 
cycle. In the present simulation, Fy is given in the form of a table. The period of 
one cardiac cycle will be determined from the heart rate.

(2) Breathing disturbance. In the previous simulation of the case with Sheep 
#7, it has been shown that the breathing disturbance is dominant in the response 
of the weighing system. The situation will be different in the case of a human 
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OBE in a relaxed state, but as will be shown later, the disturbance caused by 
breathing will remain dominant in the system response.

Because there is no experimental data for breathing disturbance, a simple mod-
el is prepared for the following simulation study. The model, which is described 
in the Appendix, is intended to describe the up-down motion of the abdomen of a 
male subject in relation with the change in the air volume in the lungs during one 
breathing cycle. This up-down motion causes a cyclic force-impulse, IF(t)dt, to 
which the weighing system may respond. The model assumes F(t) to be square-
shaped with height F1 (>0) and time width DT. The impulse −F1xDT (upward) 
and +F1xDT (downward) will be imposed on the system at the start of inhalation 
and at the turnaround to exhalation, respectively, in every breathing cycle. The 
time interval (TB1) of inhalation is assumed to be one-third of a breathing period. 
The magnitude of F1xDT has been evaluated in Table A1 of the Appendix. The 
evaluation shows that the impulse ranges from 0.034 to 0.101  N·s, depending 
primarily on the inhaled/exhaled air volume per breath, period of breathing, and 
the body mass participating in the up-down motion. The breathing rate of a human 
adult at rest ranges from 10.1 to 13.1 breaths per minute [8].

The height of the square impulse F1 depends on the duration DT, which 
may range from 0.1 to 0.5  s according to muscle dynamics. However, calculations 
with changing DT have confi rmed that the effect of breathing disturbance on 
the system response will be determined primarily by the magnitude of the 
impulse, |F1xDT|. Incidentally, the (adjusted) breathing disturbance at crisis 
(Fext[t]  =  Aoxcos[vbt]) used in the case with Sheep #7 in Sec. 2.3 corresponds 
to an alternating impulse of P2Ao/vb  =  P0.22  N·s, which is about two times 
the maximum range of the impulse calculated by the simple model for a male hu-
man subject at rest. In the simulation, |F1xDT|  =  0.101  N·s is used with a con-
stant breathing rate of 13.1 breaths per minute to maximize the breathing distur-
bance.

Although these disturbance conditions may be inconsistent with the physiolog-
ical state of an OBE experient in relaxation, these are assumed simply for 
the objective of this simulation to clarify technical diffi culties caused by the 
disturbances in the supposed weight measurement experiment in OBEs. No other 
disturbance is assumed in the simulation.

As regards the supposed weight loss of the experient during OBE, it is assumed 
that a weight loss of 21  g due to OBE onset occurs instantaneously at t  =  100  s 
and the weight returns at the termination of OBE at t  =  500  s into the transient3; 
the calculation will be terminated at 600 s. In the simulation, a constant rate of 
decrease in the body weight due to insensible perspiration (i.e., moisture evaporat-
ing from the body during respiration and sweating) is assumed to be 31.5  g/h, 
which, based on standard physiological data, corresponds to 21% of the total 
daily heat loss (2100  kcal/day in a person in their 60s) from the body4. The time 
step size and convergence criterion used for the numerical solutions are similar to 
those used in Sec. 2.3.
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3.2. Result of Simulation

(1) System response under disturbances. Figure 4a and b (4b is part of 4a in 
an expanded time scale) shows the result of simulation under the assumed distur-
bances. The calculated total disturbance showed a peak-to-peak swing of about 

Fig. 4a.  Simulation of supposed change in weight of OBE experient with weight decline at 
31.5 g/h caused by insensible perspiration.

Fig. 4b. Part of the result shown in Figure 4a in expanded time scale.
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346  gf (3.39  N), out of which 306  gf (3  N) was caused by the high frequency 
cardiac disturbance, while the system response showed vibrations with a peak-
to-peak swing of about 75  gf when the effect of damped vibration ceased. About 
22% of the total disturbance is transmitted to the system response (if only the 
cardiac disturbance is assumed, about 8% will be transmitted). These vibrations in 
the system response are considered to be noise signals from the view point of the 
supposed experimental purpose. As seen in Figure 4a and b, the system response 
barely shows about 20  gf of decrease in the weight of the OBE experient under the 
effect of the maximized disturbances.

(2) Elimination of noise from calculated system response. So long as the 
disturbances are as simple as those assumed here, these noises can be easily elim-
inated from the system response to reveal the supposed change in weight of the 
OBE experient by applying some noise reduction techniques to the signals of the 
system response. To eliminate the noises caused by the disturbances from the 
system response (R[t]), an averaging method can be applied as follows:

Averaged response: < ′ > ∫R t TB R t dt( ) ( / ) ( ) ,= x1  (4)

where the defi nite integral is calculated over one successive breathing cycle 
(t, t  +  TB), and time tp is defi ned at the mid-point of the cycle interval. The period 
of breathing cycle (TB) is 4.58  s.

Fig.  5.  Elimination of noise from the system response by averaging over each breathing cycle 
(TB  =  4.58 s).
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It should be noted that the period of cardiac cycle is about 0.94  s in this simula-
tion; hence, the one breathing cycle covers almost fi ve cardiac cycles. The system 
response expressed based on Equation 4 is shown in Figure  5 (1), which clearly 
shows the supposed change in weight of the OBE experient. Also shown in 
Figure  5 (2) is a similar average of the data points sampled from all calculated 
data at the rate of 5 points/s. This sampling is made based on the 0.2  s response 
time of Hollander’s system. A small difference is seen between these two 
averaged results. However, these results show that if there really is some abrupt 
decrease in weight of the OBE experient of the order of tens of grams during 
OBE, the history of weight decrease can be discerned from the record of system 
response.

In actual experiments, we must also cope with the electrical drifting of instru-
ments of the weighing system over the extended hours for which the experiments 
run; however, this issue can be dealt with technically.

However, no experimental result has been reported to show such a weight 
change of experients in any kind of transitions to and from altered states of 
consciousness, though only a very preliminary experimental report by John 
Hasted et al. [12] is available in this fi eld of research. Why is this the case? 
Vernon Neppe and John Palmer contributed to a recently (in 2005) published book 
Parapsychology in the Twenty-First Century [13], writing an extensive review (up 
to the year 2002) and outlining future perspectives of research in the fi eld of OBEs 
and near death experiences. However, they did not mention the possibility of an 
“objective” change in the weight of experients during such “subjective” paranor-
mal experiences (SPEs in Neppe’s term). Perhaps the lack of discussion on the 
subject explains the reason for only few reports being available.

An OBE as an SPE, however, is very much a subjective experience as com-
pared to the SPE of “trance channeling,” which can be obviously witnessed and 
controlled by experimenters during trance channeling sessions. This suggests that 
weight measurement experiments using a trance channeler, in comparison to 
OBE experiments, may be an easier way to obtain possible objective evidence, 
regardless of an increase or decrease in weight, of the violation of the Law 
of Conservation of Energy. However, the disturbances imparted to the weighing 
system will be greater in the former experiments.

Repetitions of MacDougall’s experiments would be ethically forbidden today, 
and perhaps Hollander’s type of experiments using animals will add no new value 
to this fi eld of research, as shown by MacDougall, Twining, and even Hollander 
himself (since no anomalous change in weight upon death is not an exciting 
scientifi c result). Further, without independent confi rmations of the “missing 
weights” of Duncan MacDougall, his experimental results mean almost nothing 
scientifi cally; this is the way of science. The only possibility of repeating 
MacDougall’s type of experiments may be the use of weight measurement 
experiments in transitions to and from altered states of consciousness. Such 
repeatable experiments will be much more meaningful than experiments to “weigh 
the soul.”
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Authentic violation of the Law of Conservation of Energy in transitions to and 
from altered state of consciousness, if demonstrated, will provide a breakthrough 
in psychology as well as parapsychology. It will also compel scientists to investi-
gate a new energy concept that can be used to understand both psychic energy and 
physical energy, fulfi lling the dream of psychologist Carl G. Jung (1875–1961) 
[14].

4. Concluding Remarks

Based on parametric simulations of the case with Sheep #7 in Hollander’s 
experiment, the following conclusions were drawn by using a simple analytical 
model of vibration for the experimental system:

(a)  The experimental result with Sheep #7 appears very natural because the 
primary aspects of the result can be simulated theoretically.

(b)  Hollander’s conclusion that “there was a transient gain of weight of 780 
grams” in the case of Sheep #7 is not an appropriate expression of the 
experimental result because the “780  gf pulse” includes an overshoot reac-
tion of the weighing system. However, the cause of the force event remains 
to be explained. It was speculated that the force event might be explained 
based on a sporadic event possibly expected in the complex ruminant 
system of sheep even after death.

(c)  The experimental results with Sheep #3 and #8 appear very strange from 
the viewpoint of theoretical prediction. It is doubtful whether the weighing 
system (primarily the four load cells) functioned normally. This question 
could have been answered if a system response test were conducted 
between successive cases with a test disturbance provided externally using 
an inert mass on the weighing platform5.

Using the computer model for Hollander’s weighing system, an analytical 
simulation of a supposed weight measurement experiment was conducted for an 
OBE subject, assuming a weight loss of 21  g during OBE. The simulation showed 
that the disturbance probably caused by breathing becomes the primary noise 
rather than the noise from cardiac disturbance affecting the system response. 
However, it was shown that some noise reduction techniques can discern the 
change in weight of an OBE experient, if there really is a weight decrease of 
tens of grams during OBEs. The present author would like to suggest weight 
measurement experiments using a trance channeler, because trance channeling is 
objectively more observable a phenomenon than OBEs.

Notes
1 The frequency of data acquisition of the experimental system was 2  Hz for Sheep #3; 

it was 21  Hz for Sheep #7 and #8. It is confi rmed, however, that even if the calculated 
system response shown in Figure  3b is expressed with data points sampled at the rate of 
2 points (out of 133) per second, the apparent result is not changed much.
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2 The maximum range of 70.8  g originated from MacDougall’s third patient. However, 
there is an ambiguity with regard to the language MacDougall used to describe the third 
patient: MacDougall wrote “My third case, a man dying of tuberculosis, showed a weight 
of half and ounce lost, coincident with death, and an additional loss of 1 ounce a few 
minutes later.” [Underline added.] The ambiguity lies in the expression “half and ounce,” 
which should have read “half and an ounce” if the loss was 1.5  oz. Thus, if the correct 
expression is “half an ounce,” then the maximum range would originate from the second 
patient (45.8  g).

3 The 21  g is 0.034% of 62.0  kg, and this fraction is well over the scale sensitivity of 
Hollander’s system (−5  g with the full-scale capacity of 100  kg).

4 Vapor mass loss rate, Mp, corresponding to this heat loss rate (Qip  =  441  kcal/day) can 
be calculated as Mp  =  Qip/DVAPH = 31.5  g/h, where DVAPH is the latent heat of water 
vaporization (=2.444  kJ/g  =  0.584  kcal/g at 25°C).

5 Hollander might have conducted such a test. However, he did not mention it in his paper 
[6].

References
 [1]  MacDougall, D. (1907). Hypothesis concerning soul substance together with experimental 

evidence of the existence of soul substance. American Medicine, 2, 240–243. (Also in (1907) 
Journal of the American Society for Psychical Research, 1(5), 237–244.)

 [2]  Blackmore, S. J. (1992). Beyond the Body: An Investigation of Out-of-the-Body Experiences 
with a New Postscript by the Author (Chap. 19, pp. 203–205). Academy Chicago. (Originally 
published in 1982; London: Heinemann.)

 [3]  Fisher, L. (2004). Weighing the Soul: Scientifi c Discovery from the Brilliant to the Bizarre 
(Chap. 1, pp. 1–22). New York: Arcade. 

 [4]  Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (1960). Transport Phenomena (pp. 212–213). 
Wiley. 

 [5]  McAdams, W. H. (1933). Heat Transmission (3rd ed.). McGraw-Hill. (International Student Ed., 
1954, p. 167.)

 [6]  Hollander, L. E., Jr. (2001). Unexplained weight gain transients at the moment of death. 
Journal of Scientifi c Exploration, 15, 495–501. Available free on JSE Web site at: http://www.
scientifi cexploration.org.

 [7]  Dimarogonas, A. D., & Haddad, S. (1992). Vibrations for Engineers (pp. 154–158). Prentice-
Hall.

 [8]  National Astronomical Observatory, Japan (Ed.). (2003). Rika Nenpyo 2003 (p. 853). Tokyo: 
Maruzen. (In Japanese.)

 [9]  Conforto, S., Schmid, M., Camomillia, V., D’Alessio, T., & Cappozzo, A. (2002). Hemodynam-
ics as a Possible Internal Mechanical Disturbance to Balance. Available at: http://www.
laboratorium.dist.unige.it/~piero/Workshop2002/dalessio-1.PDF. Accessed 22 April 2008.

[10]  Stevenson, I. (1986). Children Who Remember Previous Lives—A Question of Reincarnation. 
Jefferson, NC: McFarland. Revised edition, 2001.

[11]  Irwin, H. J. (1985). Flight of Mind: A Psychological Study of the Out-of-Body Experience 
(pp. 66–69). Metuchen, NJ, & London: Scarecrow Press. 

[12]  Hasted, J. B., Robertson, D., & Spinelli, E. (1983). Recording of sudden paranormal change 
of body weight [Research briefs]. In Roll, W., Beloff, J., & White, R. (Eds.), Research in 
Parapsychology 1982 (pp. 105–106). Metuchen, NJ: Scarecrow Press.

[13]  Neppe, V. M., & Palmer, J. (2005). Subjective anomalous events: Perspectives for the future, 
voices from the past. In Thalbourne, M. A., & Storm, L. (Eds.), Parapsychology in the Twenty-
First Century: Essays on the Future of Psychical Research (pp. 242–271). McFarland.

[14]  Jung, C. G. (1969). On psychic energy. In The Structure and Dynamics of the Psyche (pp. 3–66). 
Princeton University Press.



25Simulations of Hollander’s Experiment and OBEs

APPENDIX

A Simple Model for the Breathing Disturbance

It is known that the surface boundary of the abdomen of a male human shows 
cyclic up and down motion during the breathing cycle. The model is intended to 
describe this up-down motion in relation to the change in the gas volume in lungs 
during one breathing cycle. Let us defi ne the initial state of the gas volume as 
the exhaled state of the lungs and look at the change in the molar gas volume 
(air+CO2), which changes as the moles of gas change. For simplicity, the rates of 
air inhalation and gas exhalation are assumed to be constant during inhalation 
and exhalation, respectively. Inhalation continues from t (time)  =  0 to t  =  TB1 
and exhalation immediately follows until t  =  TB1  +  TB2  =  TB, which is the 
period of one breathing cycle. TB1/TB may be (1/3) in a relaxed state. The gas 
volume Vb will be given as follows from the ideal gas law:

Vb  =  n  x  RT/Pa , (A1)

where

 Pa = pressure of the gas in the volume; assumed to be atmospheric;
 Vb = the gas volume (not including the dead gas volume of the lungs);
 n = moles of gas in the volume;
 R = ideal gas constant;
 T = gas temperature in K.

Air intake and gas discharge are facilitated by the change in the negative 
pressure in the pleural cavity caused by the contraction/expansion of the 
diaphragm and intercostal muscles. However, we do not need to get into the 
details of the breathing mechanism for this simple model. The up-down motion of 
a part of the body mass in the abdomen may cause a dynamic disturbance, to 
which the weighing system responds.

The model assumes that the body of the experimental subject is lying supine on 
the platform of the weighing system, and that the body mass Mb participating in 
the motion is the horizontal upper half of the abdomen with a horizontal length Lo. 
Approximating the shape of the cross section of the abdomen to be an ellipse with 
a semi-major axis “a” and semi-minor axis “b,” mass Mb may be expressed as

Mb  =  (1/2)  x  pab  x  Lo  x  <r>, (A2)

where <r> is the average density of the body.
The model assumes that the center of mass of Mb will be displaced vertically 

by a distance dx due to an increase in the gas volume dVb as follows:

dx  x  So  =  dVb,

where So  =  Lo  x  2a and dx is defi ned as positive for vertically upward 
displacement.
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This relationship leads to the following differential equation:

dVb/dt  =  So  x  dx/dt, (A3)

where dt is the time interval in which dVb occurs.
The left side of Equation A3 is proportional to air intake rate, (dn/dt), during 

inhalation, and to gas discharge rate during exhalation.
The momentum (P) of the mass Mb may be expressed by using Equations A1, 

A2, and A3 as follows:
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Because the gas intake and discharge rates, dn/dt, are assumed to be constant 
during both inhalation and exhalation, the momentum of the mass will be constant 
during both inhalation and exhalation; the former momentum is expressed as P1, 
and the latter as P2. This change in momentum will be repeated cyclically with the 
period of breathing, TB.

Vb will reach its maximum, Vb  max, at the end of inhalation with the maximum 
number of moles of gas, nmax. Then, the assumed constant rate, dn/dt, will be 
expressed as follows:
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Vb  max is the air volume breathed per breath. Then, the momenta P1 and P2 will 
be expressed as follows:
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The cyclic momentum of the mass cannot change from P2 to P1 at the start of 
inhalation; neither can it change from P1 to P2 at the turnaround to exhalation 
without some action. There must be an impulse force, F(t), acting to cause the 
change in momentum:
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These impulses may be caused by the actions of some muscles relevant to 
breathing. Assuming square-shaped impulses of Fin(t) and Fex(t) with the same 
time duration DT for model simplicity, the height of the impulse will be expressed 
as follows:



27Simulations of Hollander’s Experiment and OBEs

F t F

F t F
in

ex

( )

( )

=

=
1

1

 during T at the start of inhalation,

 

Δ
− dduring T at the turnaround to exhalation.Δ

F1 will be expressed as follows using the expressions for P1 and P2 given 
above:
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where x w TB1/TB.
If TB1 = TB2, the impulse F1xDT is expressed as

F T b V TBb1 × × < > ×Δ = p r max / .  (A5b)

The following data have to be specifi ed as input to use in Equation A5a:

 Vb  max = gas volume inhaled/exhaled per one breathing cycle (m3);
 TB = length of one breathing cycle (s);
xwTB1/TB = fraction of inhalation time interval per breathing cycle; x = (1/3) 

   will be used for a typical adult at rest (note that function 
   1/[x(1-x)] has a very fl at bottom in the range of x = 0.3 to 0.7 
   with the minimum 0.4 at x = 0.5);

 <r> =  average density of human body; assumed to be equal to the density 
of 4% saltwater density at 20°C: 1027  kg/m3;

 b =  length of minor axis of the elliptic cross section of the abdomen 
(m);

 DT =  duration (s) of the square impulse F1; will be treated as a parame-
ter.

Table A1 shows basic biological data used to obtain TB and Vb  max for the 
evaluation of the required impulse, F1xDT. (The sheep data in the top table (A) 
are shown for comparison.) The estimated ranges of impulse, F1xDT, are shown 
in the bottom table (B) for the cases of human male subjects, who may show 
greater impulses than female subjects. The impulses range from 0.034 to 0.101  N·s. 
The height of the square impulse F1 depends upon the duration DT, which may 
range from 0.1 to 0.5  s based on muscle dynamics. However, it can be shown that 
the effect of the breathing disturbance on the system response primarily depends 
on the magnitude of the impulse, |F1xDT|.
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TABLE A1
Basic Biological Data and Results of the Impulse Model for the Breathing Disturbance

(A) Biological Data of Breathing of Humans and Sheep at Rest (Based on Data in a Science 
Handbook [8])

Item

Human male (at rest) Human female (at rest) Sheep (at rest)

Min Max Min Max Min Max

Air volume breathed per minute 
(liters/minute)  5.8 10.3  4  5.1  5.95  7.69

Breaths per minute (1/minute) 10.1 13.1 10.4 13 15.7 23.6

TB (s)  4.58  5.94  4.62  5.77  2.54  3.82 
Vb  max (liters/breath)  0.443  1.020  0.308  0.490  0.252  0.490 
Air mass per breath (g/breath)  0.505  1.164  0.351  0.560  0.288  0.559 

Average TB (s) 5.172 5.128 3.053 
Average Vb  max (liters/breath) 0.694 0.389 0.347 

Note: Only the fi rst two rows are from [8]; the min and max simply correspond to the ranges obtained 
from [8]. The data in the third row and below are calculated based on the fi rst two rows’ data; min, 
max, and average show only the possible ranges and average calculated using the min and max data in 
the fi rst two rows. Atmospheric air density=1.1415  kg/m3 at 37°C. TB = period of breathing cycle; 
Vb  max = air volume breathed per breath.

(B) Evaluation of the Impulse Using Human Male Data

Data Case 1 Case 2 Case 3

Vb  max (m3/breath)a 6.940E−04 1.020E−03 4.430E−04
TB (s) 5.17 4.58 5.94
xwTB1/TB (−) 1/3 1/3  1/3
<r> (kg/m3) 1027 1027 1027
b (m)b 0.125 0.125 0.125
Impulse F1xDT (N·s)c 0.061 0.101 0.034
Note With average data 

pair of TB & Vb  max

With pair to give 
max impulse

With pair to give 
min impulse

Note: Vb  max  =  air volume breathed per breath; TB1  =  time interval of inhalation; TB  =  period 
of breathing cycle; <r>  =  average density of body; b  =  half abdomen thickness; F1  =  height of 
impulse; DT  =  duration of impulse. 
a  “6.940E−04,” for example, stands for 6.940  x  10−4.
b  Half abdomen thickness “b”  =  0.125 m is based on the present author’s body.
c  The impulse by the model for the body lying supine on the platform: F1  x  DT  =  (1/4)  x
pb  x  <r>  x  Vb  max / TB/[x(1  -  x)], where x  =  TB1/TB. The duration of impulse DT, possibly 
ranging from 0.1 to 0.5 s, does not much affect the simulation.


