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INTRODUCTION

Over the past century, Parapsychology has amassed 
an extensive collection of anomalous observations that, 
when viewed together, suggest that human consciousness 
can exist and function independently of the brain (Kelly 
et al., 2007). Cases of veridical near-death experiences 
(NDEs) suggest that under some circumstances, clinical 
patients experiencing extreme physiological stress (of-
tentimes as a result of cardiac arrest) can accurately per-
ceive remote locations in detail– a feat that they would be 
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Approximating the Effect of 
Consciousness on Stochastic 
Brain Structures

unable to accomplish if they were fully conscious and not 
in the throes of a serious medical emergency (Kelly et al., 
2007, Chapter 6). Cases of young children claiming to re-
member details of “previous lives,” who bear birthmarks in 
the shape of fatal injuries they claim to have sustained in 
previous lives, whose detailed stories can be matched to 
the life stories and autopsy information of deceased peo-
ple suggest that in some circumstances consciousness 
can reincarnate after bodily death (Tucker, 2008). While 
research into anomalous experiences and happenings of 
this sort does little to shed light on what consciousness 
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discuss how biases of the kind and size shown to exist 
when applied to all stochastic brain processes could fea-
sibly allow a brain-independent consciousness to exert 
substantial control over its associated body. The methods 
presented here can be used to perform similar analyses 
on other brain structures that exhibit stochastic behavior. 
The results that we present here are relevant to any the-
ory positing that consciousness is not the sole product of 
rote computations carried out by neurons.

STOCHASTIC WILSON-COWAN MODEL OF BI-
NARY DECISION MAKING ATTRACTOR NET-
WORKS

The Basic Stochastic Wilson-Cowan Model

Empirical data collected from animal experiments 
have shown that binary decision-making attractor net-
works are composed of two competing populations of 
excitatory and inhibitory neurons whose interaction is 
mediated by inhibition (Deco & Martí, 2007). The brain 
uses each of the two populations to represent one of two 
possible binary decisions. In general, after interacting for 
some time, one population ends up with a firing rate sig-
nificantly higher than the other, signifying that its associ-
ated decision value has been reached. As the populations 
interact, sensory input fed to each population biases the 
attractor network to favor one decision over the other if 
significant evidence for one decision exists. In cases where 
there is no evidence supporting either of the binary deci-
sions, random noise alone is responsible for causing the 
system to favor one decision over the other (Deco et al., 
2007). Neurons in the same population are connected to 
each other with excitatory connections of dimensionless 
weight w₊. The two populations are connected with inhib-
itory connections of dimensionless weight wı. The time 
evolution of the firing rates of the two groups of neurons, 
vᵢ(t) where i = 1,2, is driven by competing inhibitory and 
excitatory interactions—a sort of “push and pull”.

This interaction can be accurately modeled using a 
system of stochastic first-order Wilson-Cowan differen-
tial equations (Deco et al., 2007). We will consider Gus-
tavo Deco’s 2007 model:

where wij is the (dimensionless) total synaptic strength 
between populations i and j, λᵢ is the external sensory 
input received by population i measured in Hertz, τ is a 
time constant describing the rate at which the system re-
sponds to sensory input change measured in milliseconds

is directly, it makes a compelling case for what conscious-
ness is not. If consciousness can exist without a brain, 
then it is not, as contemporary neuroscience posits, an 
emergent property of neuronal interactions. This would 
imply the existence of mind-matter interactions taking 
place inside the human brain. Easily observable neuro-
nal processes drive conscious behavior requiring physical 
movement in humans and brain-equipped animals. For a 
brain-independent consciousness to exert control over 
the actions of its body, it must be able to influence these 
neuronal processes in some way.
    Generally, individual neurons behave deterministical-
ly following the Hodgkin-Huxley model, so there is no 
room for a brain-independent consciousness to influ-
ence the activity of these cells significantly. However, in 
vivo observations of layer five pyramidal cells in awake 
cats have shown that some pyramidal cells deviate from 
Hodgkin-Huxley behavior (Naundorf et al., 2006). These 
neurons have an unusually wide firing threshold win-
dow, resulting in large temporal variability in spike times 
(Hameroff & Penrose, 2014). Empirical evidence sug-
gests that the physical structures underpinning many 
brain functions associated with consciousness, such as 
decision-making, attention, and some types of memory 
recollection, need to consume random noise to function 
properly (Deco et al., 2009). A significant portion of this 
noise comes from the probabilistic spiking of pyramidal 
cells (Rolls & Deco, 2012, pp. 78-80). If consciousness 
is independent of the brain, it must a priori exert influ-
ence on the brain by influencing the random noise that 
it consumes. This suggests that certain pyramidal cells 
may contain some mechanism that consciousness can 
influence. Some have speculated that layer five pyrami-
dal cells contain what are essentially small quantum ran-
dom noise generators made of microtubules (Hameroff & 
Penrose, 2014). It may be the case that these structures 
are sensitive to micro-PK effects, as there is evidence that 
a combination of conscious attention and intention can 
influence the behavior of random systems, not limited to 
just those of a quantum nature (Kauffman & Radin, 2021).

Of the brain structures thought to require the con-
sumption of random noise to function, perhaps the best 
understood are those that make binary decisions (Deco 
et al., 2007). In this paper, we will approximate  how sen-
sitive the behavior of stochastic binary decision-making 
neural networks is to small changes in the underlying 
randomness that they consume. We will show that small 
changes in the variance of the randomness consumed (on 
the order of 0.1 Hz2) by the networks bias the networks 
to select one choice over the other. Our analysis will use 
the moment method, and we will derive an analytical ap-
proximation for the size of the decision bias. We will then 



61journalofscientificexploration.org  JOURNAL OF SCIENTIFIC EXPLORATION • VOL. 37, NO 1– SPRING 2023

Benjamin T. Hendel                                    APPROXIMATING THE EFFECT OF CONSCIOUSNESS ON STOCHASTIC BRAIN STRUCTURES

Figure 1.  Two populations of neurons, each correspond-
ing to one of two binary decision outcomes, interact 
with inhibitory connections between populations (red) 
and excitatory connections within populations (green). 
The inhibitory connections between the two popula-
tions have dimensionless weight wI, and the excitatory 
connections among neurons in the same population have 
dimensionless weight w₊.

,and φ(x) is the sigmoidal activation function (Deco & 
Martí, 2007). Here vc is both the maximal activity rate of 
the two populations and the input frequency needed to 
cause each population to assume one-half of its maximal 
activity rate, and α is a constant. Random fluctuations in 
the attractor network are modeled by independent addi-
tive Gaussian noise terms ξi (t) measured in Hertz satis-
fying    < ξi (t) > = 0 and < ξi(t)ξj(s) >= β2δ(t - s)δij  where 
the angle brackets denote expected value β and  is the 
variance of ξi(t).

The Phase Plane of the Non-Stochastc Wil-
son-Cowan Model

Figure 2 depicts the phase plane of what we will re-
fer to as the non-stochastic version of Equation (1), which 
we will formally define as the case where β = 0 . The case 
where β = 0 need not be viewed as a stochastic differ-
ential equation, as if the variance of ξi(t) is zero then the 
noise term in Equation (1) vanishes because < ξi (t) > = 0. 
The time evolution of the system initialized at two initial 
states v1 = 1.25, v2= 1 and v1 = 1, v2= 1.25 is shown as blue 
lines. The three fixed points of the system are displayed 
as red dots. The phase plane contains two basins of at-
traction separated by the line v1=v2, which have been la-
beled P1 and P2. For initial states in P1, where v1 > v2 (or 
equivalently vdef = (v1, v2) ∈ P1, the system eventually falls 
into the fixed point in P1, which we will refer to as F1. For 
initial states in P2, where v2 > v1, the system eventually 

falls into the fixed point in P2, which we will refer to as 
F2. We will refer to the fixed point on v1=v2 as F0. In the 
non-stochastic version of Equation (1), the side of the 
v1=v2 line that the system’s initial state resides on com-
pletely determines its final state. This observation will 
later play a crucial role in deriving the approximation of 
the behavior of Equation (1) in our moment method anal-
ysis. F1 and F2 correspond to “decision states” that are 
assumed by the attractor network to represent that one 
of two possible decisions has been made (Deco & Martí, 
2007). F0 corresponds to the “spontaneous state”, which 
is assumed by the attractor network to represent that a 
decision has not yet been made. In the presence of noise, 
the attractor network will tend to settle near one fixed 
point, each of which carries meaning in the context of the 
binary decision being made. For all numerical simulations 
in this paper we will let w11 = w22 = w₊ -wI  and w12 = w21 = 
w_ - wI  where w₊ = 2.45 ,wI = 1.9, w_ = 0.43(w₊ - 1), and 
vc  = 20  Hz, α = 4, τ = 10 ms, and λ1 =λ2 = 15 Hz . These 
parameters were motivated by the model in Deco’s paper 
and chosen so that F1 and F2 are stable.

Applying the Moments Method to the Sto-
chastic Wilson-Cowan Model

The behavior of Equation (1) is fundamentally proba-
bilistic. Its behavior can be studied via repeated numeri-
cal simulations, but these are resource-intensive and do 

Figure 2.  The phase plane of the non-stochastic version 
of Equation (1). The time evolution of the system is 
shown in blue for two example starting points: (1.25, 
1) and (1, 1.25). The three fixed points of the system are 
shown as red dots. The arrows show the normalized 
direction field. Regions to either side of the v1=v2 line 
are labeled as P1 and P2.
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Figure 4 depicts a histogram1 of the  component of 
the result of one thousand simulations of Equation (1) for 
each of β = 0.1 and β = 0.6 for 2000ms starting at the 
point F0+(-½, ½). The simulations were done using the 
Euler–Maruyama method with a step size of 0.01ms and 
the variable values given in section 1. Table 1 summarizes 
the results of seven batches of one thousand simulations 
conducted in the same way. The v1 value of F2, denoted 
F2(v1), along with the v1 values of F1, F0, and the starting 
point F0+(-½, ½) are shown on the histogram as vertical 
lines. Over two seconds of simulated time, the neural 
network tends to settle down near either F1 or F2, cor-
responding to each of the two possible binary decision 
states. It can be seen that varying the variance of the ran-
domness consumed by the binary decision-making neural 
network biases its decisions and that the size of the bias 
increases as the variance increases.

We will construct an analytical approximation of 
binary decision bias under varied variance motivated by 
these observations and justify the approximation using 
previous observations about the geometry of the phase 
plane of the non-stochastic version of Equation (1). Equa-
tions (2) through (6) completely define the bivariate nor-
mal joint density of v1 and v2 at time t, which we will de-
note as N(μ(t),γ(t)) where μ(t) is the mean vector and γ(t) 
is the covariance matrix. It follows that:

holds when the final time tf is small enough that the dis-
tribution of final states is approximately normal. Here we 
introduce the notation Papprox(v ∈ P𝑖 ,t =t𝑓) which is used 

not directly yield results that can be used to describe the 
dynamics of the neural network analytically. It is possi-
ble to compute the first and second moments of the ran-
dom variable vi(t) at time t using the moments method  
(see Figure 3 below) where μᵢ(t) is the statistical mean of 
vᵢ(t) at time t for i=1,2, γij are elements of the covariance 
matrix, and μᵢ = λi + ∑2j = 1 wijuj(t) (Deco & Martí, 2007). 
These calculations assume that the bivariate distribution 
of the vector v(t) is Gaussian, and this fact will limit the 
predictive power of the analysis that we will perform in 
section 2. Notice that the variance β of ξᵢ (t) shows up in 
Equations (2) through (6). While the time evolution of the 
means of random variables v1 and v2 is not affected by β, 
the time evolution of the variance of the random variables 
is.

An Analytical Approximation of Binary Deci-
sion Bias Under Varied Variance

In the non-stochastic version of Equation (1), as we 
have seen, the attractor network’s initial state deter-
mines if it will end up at F1 or F2 as time progresses. Initial 
states in P1 will cause the system to end up at F1, and ini-
tial states in P2 will cause the system to end up at F2. As 
soon as noise is introduced to Equation (1), this changes.

As the variance of ξᵢ (t) increases, the state of the at-
tractor network gets more “jittery” as it evolves in time 
and moves about the phase plane. The more “jittery” the 
state vector becomes, the more likely it is to jump from 
one side to the other of the v1=v2 line and thus switch ba-
sins of attraction in some fixed time interval. This can be 
observed via numerical simulation.

Figure.3 Formulas (2) through (6).
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to denote the value of our approximation of P(v ∈ Pᵢ, t = 
tf), which we have previously only computed via repeat-
ed and tedious numerical simulation. Note that the dis-
tributions of final states are not normal over long time 
intervals, as shown in Figure 4. However, since in the 
long term, v ∈ Pᵢ implies that the decision correspond-
ing to Fi has been reached, we can take Equation (7) to 
be an analytical approximation of the influence of varied 
variance on decision bias over short periods of time2. The 
integral can be numerically approximated using a Mon-
te-Carlo method. It is sufficient to programmatically sam-
ple a large number of points from N(μ(t),γ(t))  and then 
count the cases where, without loss of generality, vi>vj 
and compute a point-count ratio between points in Pi and 
the total point count to approximate P(v ∈ Pᵢ, t = tf). This 
kind of Monte-Carlo integration is a standard technique 
for numerically evaluating integrals and has applications 
beyond probability theory (Weinzierl, 2000, p. 11).

In Figure 5, Equation (7) has been evaluated at many 
variances for 30ms starting at initial state F0+(-½, ½) 
with every element of the covariance matrix initialized to 
zero using the aforementioned Monte-Carlo method.  In 
Figure 6, simulation data used to create Table 1 is visual-
ized to show that in this particular case, the probability 
distribution of v values is roughly normal at t =30. As the 
variance of the randomness consumed by the binary deci-
sion-making neural network is increased, the probability 
that the state vector will still reside in P2 at the end of the 
30ms time window decreases. There are regions in Figure 
5 where small changes in variance can induce a signifi-
cant decision bias. For example, according to the approx-

Figure 4 . A histogram of the v1 component of the result 
of one thousand simulations of equation (1) for two vari-
ances initialized at v = F0+(-½, ½) and ran for 2000ms 
with a step size of 0.01ms.

 (Hz2)

0 1.000
0.1 0.819
0.2 0.722
0.3 0.648
0.4 0.605
0.5 0.576
0.6 0.532

Table 1. For each variance value, Equation (1) was ini-
tialized at v = F0+(-½, ½) and executed 1000 times for 
2000ms of simulated time with time steps of 0.01ms. 
Each final state was classified as being in either P1 or P2, 
and the ratio of P2 states to P1 states are shown beside 
each variance value.

imation, a shift in variance from 0.05 Hz2 to 0.1 Hz2 will 
induce a 14.6% increase in the probability that the state 
vector escapes P2. While the parameters of the simula-
tion in Figure 5 were chosen somewhat arbitrarily, the 
same sort of behavior can be observed for a wide variety 
of parameters when the state vector is close to the v1=v2 
line at t = 0.

DISCUSSION 

Here we have derived an approximation that de-
scribes how changes in the variance of the randomness 
consumed by a binary decision-making neural network 
bias the network towards one decision or the other. The 
approximation assumes that given a fixed initial state, 
the probability distribution of final states at tf is rough-
ly normal. The “moments method” that the approxima-
tion is based on is applicable to a wide range of neuronal 
structures and was originally created as a generic tool 
to work with equations similar to Equation (1) (Deco & 
Martí, 2007; Rodriguez & Tuckwell, 1996). Additionally, 
we have shown that under some circumstances, changes 
in variance of approximately 0.05 Hz2 can induce a de-
cision bias on the order of 10%. These results come as 
no surprise, given Deco’s results showing that for sim-
ulations of Equation (1) initialized at decision states 
(the points we have labeled F1 and F2), larger variances 
make it more likely that the simulated attractor network 
settles down near the decision state that it was not ini-
tialized at (Deco & Martí, 2007, p. 9). When viewed as a 
computational device, a function (one of several) of the 
stochastic binary decision-making neural networks stud-
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ied here is to transform small changes in the variance of 
the randomness that they consume into network-level 
electrochemical signals that can be consumed by other 
structures in the brain. 

Assuming that the majority of stochastic brain struc-
tures respond in similar ways to small changes in the 
variance of the randomness they consume, a brain-in-
dependent consciousness able to exert a small influence 
over the variance of said randomness would likely be able 
to exercise significant control over the functioning of 

the brain. While the brain is full of small populations of 
strongly interconnected cells that perform tasks in rela-
tive isolation, these populations of interconnected cells 
are themselves interconnected, and the level of intercon-
nectedness between them can be quantified (Tononi et 
al., 1994). The brain is highly recursive. A bias of equiva-
lent magnitude to the roughly 10% bias predicted by our 
model when exerted on the output of a generic stochas-
tic neural network over the duration of a single task does 
not seem, at face value, to offer very much control over 
the operation of the brain. However, due to the inter-
connectedness of stochastic brain structures, a bias of 
this size, when applied continuously over all stochastic 
brain structures, will compound very quickly. The com-
putational result of a given stochastic neural network is 
dependent on both its input and the randomness that 
it consumes. If the randomness that a given structure 
(name it structure A) consumes is slightly biased, and its 
input originates from the output of another stochastic 
structure (name it structure B) subject to a bias of the 
same magnitude, then the net effect of the biasing influ-
ence on structure A will be greater than the net effect of 
the biasing influence on the randomness that structure 
A consumes. The conscious will of a brain-independent 
consciousness could be accumulated by stochastic neu-
ral networks over time if the results of slightly biased 
computations are continually being fed back into bias-
able structures as input.

While there are many conceivable ways for a sto-
chastic system to be made sensitive to the effects of 
small changes in the variance of the randomness that it 

Figure 5. Equation (7) evaluated at a variety of variance 
values for 30ms starting at v = F0 + (-½, ½).

Figure 6. Simulated v values from the 1000 trials used to generate the β = 0.6 row of Table 1. At t =30ms, the v values 
are roughly normally distributed. At t = 2000ms, the v values are no longer normally distributed. 
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consumes, the binary decision-making structures that we 
studied here accomplish this in a very specific way. The 
state of the system is initialized near a separatrix on the 
phase plane (the v1 = v2 line in the case of our model), and 
because of this, changes in the variance of the underlying 
randomness being consumed by the system effect how 
far the state of the system is expected to wander from 
its starting point over any small, fixed time interval (small 
enough that the probability of falling into a stable fixed 
point is negligible), which in turn effects how likely the 
system is to cross the separatrix. The system is prone to 
undergoing noise-induced state transitions. This type of 
system is common in nature. Many natural systems, from 
lasers to populations of viruses, are prone to undergo the 
same sort of noise-induced transitions (Forgoston, 2018). 
In the human brain, unlike in many similar systems, the 
noise involved in noise-induced transitions is presumably 
produced by a noise source that is sensitive to micro-PK. 
It is reasonable to suspect that any stochastic system 
sufficiently like the stochastic systems in the brain that 
derives its randomness from a noise source sensitive to 
micro-PK should be able to be influenced by a brain-inde-
pendent consciousness in the same way that we hypoth-
esize the brain is. 

A complete theory of brain-independent conscious-
ness must describe the dynamics of three distinct but re-
lated processes:

1. Consciousness-to-brain communication. How 
does a brain-independent consciousness drive brain 
activity?

2. Brain-to-consciousness communication. How 
are electrochemical signals in the brain experienced 
by a brain-independent consciousness?

3. Binding. Why is it that brain-independent con-
sciousnesses are seemingly bound to their bodies? 
Why can’t my will raise your arm?

The results presented here only attempt to present a 
partial explanation of item (1) of this list.

 Our model assumes that a brain-independent 
consciousness can exert influence on the seemingly ran-
dom firing times of pyramidal neurons, but it does not ad-
dress how this influence is achieved in the first place. This 
problem, however, has been previously examined by oth-
er authors. It has been theorized that at the most basic 
level, consciousness-to-brain communication is achieved 
via the Quantum Zeno Effect, abbreviated QZE (Stapp, 
2015). In a nutshell, the QZE is the observation that rap-
id, repeated observations of some measurable aspect of a 
quantum system will slow the time-evolution of the sys-
tem in a way that the measured aspect will tend to (prob-

abilistically, of course) become “frozen” in the state it was 
first measured in (Misra & Sudarshan, 1977). It may be the 
case that rapid, repeated probing of quantum processes 
in the brain by consciousness biases the states of these 
processes by holding them in fixed states for long peri-
ods of time (Stapp, 2015). If there are quantum processes 
occurring inside of pyramidal cells, then “freezing” their 
states for a period of time may affect the overall behavior 
of the cells, affecting the time at which they fire. When 
performed over large groups of cells simultaneously, the 
theorized “quantum state freezing” could conceivably 
produce changes in the randomness consumed by entire 
stochastic brain structures, perhaps causing the sorts of 
variance changes studied here. 

If biased noise is being consumed by stochastic brain 
structures, observing the effects of the biased noise 
should be straightforward using conventional techniques. 
It is likely possible to directly falsify predictions made 
by Equation (7). In vivo observations of stochastic deci-
sion-making neural networks played a large role in de-
riving the biologically realistic models of these networks 
that we studied here (Deco et al., 2007; Wang, 2002). 
In the opinion of the author, constructing falsifiable dy-
namical models describing the interaction between con-
sciousness and network-level neuronal activity should be 
a primary goal of Parapsychology going forward.

Implications and Applications 

If it is indeed the case, as we have hypothesized, that 
stochastic structures in the human brain integrate con-
sciousness-to-brain communications into network-lev-
el computations being carried out in the brain, then the 
results presented here have immediate implications for 
medicine. If a specific set of stochastic attractor net-
works in a patient’s brain becomes damaged, it should, in 
theory, be possible to replace each network with a micro-
controller that, when biologically necessary, numerically 
solves the appropriate set of stochastic Wilson-Cowan 
equations using randomness derived from an entropy 
source that is suspected to be sensitive to micro-PK (such 
as a quantum random number generator). Such a device, 
if constructed2 with an appropriate, micro-PK sensitive 
source of randomness, may at least partially restore the 
consciousness-to-brain communication previously occur-
ring in the replaced brain tissue. Perhaps this might allow 
some people immobilized due to brain damage to regain 
some degree of mobility. 

NOTES

1 There are no constraints on Equation (1) that stop vi from 
randomly assuming negative values. Neither population 



66 JOURNAL OF SCIENTIFIC EXPLORATION • VOL. 37, NO 1 – SPRING 2023 journalofscientificexploration.org 

APPROXIMATING THE EFFECT OF CONSCIOUSNESS ON STOCHASTIC BRAIN STRUCTURES                              Benjamin T. Hendel

of neurons can fire at less than 0 Hz, but no attempt to 
reconcile this will be made here. This only becomes no-
ticeable when some Fi is close to zero on one axis, as is 
the case here where F2(v1) ≈ 0.8.

2 Equation (7) can be used to compute the effect of a small 
shift Δv in the initial value of v (which would correspond 
to a short-lived mean shift in the values of the ξi(t) ran-
dom variables) as ΔP(v ∈ Pi , t=tf) = P(v ∈ Pi , t=tf, initial 
v of vi+Δv) - P(v ∈ Pi , t=tf, initial v of vi) but small shifts 
in initial v values do not have a large effect on P(v ∈ Pi , 
t=tf) in the same way that small shifts in β do, so a de-
tailed discussion of this is not undertaken here

3 Such a device could clearly be constructed in the general 
case, as making a reasonably powerful computer simulate 
the requisite Wilson-Cowan equations in a biologically 
feasible amount of time is simply a matter of increasing 
the simulation step size until the computer can perform 
the task. However, it is not immediately clear that such a 
device could currently be constructed to only occupy the 
volume of the tissue that it is replacing. Devices such as 
this, if found to work as intended, might have to be worn 
outside of the body.
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