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Article of Interest

On the Reality of the Quantum State by M. F. Pusey, J. Barrett, and T. 
Rudolph, Nature Physics, 8, 476–479, May 2012. doi:10.1038/nphys2309.

Is the Quantum Wave Function Real?

Reality? What a concept.   
                                                                          —Robin Williams

Introduction

The confl ict between all we know about the physics of quantum systems and 
what we say or believe is real about them is brought forward dramatically 
with the concept of the quantum wave function (QWF). Is the QWF ontic 
or merely epistemic? Here I review and clarify through original examples 
the recent work of M. F. Pusey, J. Barrett, and T. Rudolph who have formed 
a novel theorem to decide on the ontology or epistemology of a QWF based 
on a hidden variable (HV) theory dating back to the mid-20th century.

In a remarkable remark, physicist E. T. Jaynes once stated:

We believe that to achieve a rational picture of the world it is necessary to 
set up another clear division of labor within theoretical physics; it is the job 
of the laws of physics to describe physical causation at the level of ontology, 
and the job of probability theory to describe human inferences at the level 
of epistemology. The Copenhagen interpretation scrambles these very dif-
ferent functions into a nasty omelet in which the distinction between real-
ity and our knowledge of reality is lost. (Jaynes 1989) 

I shall use the adjectives ontic and epistemic to modify a number of nouns 
such as physics, beliefs, observables, and reality as most of us currently 
understand these things. Hence ontic reality is what we accept as real and 
“out there” objectively independent of anything we have to say, believe, or 
know about it. Epistemic reality, on the other hand, is what we accept as real 
and “in here” subjectively dependent on what we think, know, or believe is 
either ontic or epistemic reality.

Into this omelet we now add some new ingredients, or perhaps better 
said, we give the omelet another fl ip in the frying pan. Is the quantum wave 
function (QWF) epistemologically or ontologically real? In a recent Na-
ture review, E. S. Reich (2012) discussed the latest work (the article under 
review here) of three physicists: M. F. Pusey, J. Barrett, and T. Rudolph 
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(PBR). PBR, basing their work on a number of previous epistemic vs. on-
tic considerations dating all the way back to the Einstein–Bohr debate at 
the 1927 Solvay conference in Brussels and continuing with the 20th- and 
21st-century work of many others, notably Bell, Bohm, Caves, Fuchs, Har-
rigan and Spekkens, Kochen and Specker, Norsen, and others, once again 
throws down the gauntlet of uncertainty by attempting to provide an ontic 
view of the QWF, something that even Bohr most likely was not ever 
considering. Jaynes even pointed out that the famous Bohr–Einstein debate 
was actually never resolved in favor of Bohr at Solvay in 1927—although 
common thinking even among physicists is that it was—when you consider 
that the two physicists were not discussing the same physics. Bohr was only 
thinking about epistemic physics while Einstein was considering only ontic 
physics. Hence while Bohr believed quantum physics was certainly epis-
temically complete (like classical thermodynamics), Einstein was equally 
correct in believing that quantum physics wasn’t ontologically complete 
(like Newtonian mechanics). 

The confl ict between all we know about the physics of quantum sys-
tems and what we say or believe is real about them is brought forward 
dramatically with the concept of the QWF. Is the QWF ontic or merely epis-
temic? To decide on the ontology or epistemology of a QWF, an old argu-
ment known as the hidden variable (HV) theory dating back to the mid-20th 
century is revisited. This theory was probably most emphasized by David 
Bohm (who formulated from standard quantum physics an ontic QWF that 
infl uenced a real particle). Later it was revisited by Bell, in his famous no-
go theorem involving a QWF describing two quantum-entangled separated 
particles à la Bohm’s version of the Einstein, Podolsky, and Rosen (BEPR) 
paradox. BEPR showed that such a QWF could not be local (measurements 
made on one particle at one spacetime location could infl uence and change 
the QWF and therefore the outcome of measurement on the other particle 
at a distant (spacelike) spacetime location simultaneously). Bell’s theorem 
shows that any hidden variable theory must involve nonlocal infl uences at 
the ontic level, regardless of what you think of the QWF. Hence one might 
conclude from Bell’s famous HV theorem (à la Einstein) that QWFs are 
epistemological rather than ontological since two observers could have dif-
ferent beliefs about the quantum state of their respective spacelike separated 
particles.1

Quantum physical HV theories all have one thing in common: They all 
have ontic defi nite-valued hidden states underlying the QWF. A specifi ca-
tion of these HVs should reveal the results of a measurement of any property 
or observable.2 So the question is what would one need to do to HV theory 
to make the QWF ontological? This is precisely what PBR do by making 
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a particular assumption: If a specifi cation of an HV uniquely determines a 
QWF, then the QWF is ontic. If, on the other hand, specifi cation of an HV 
does not uniquely determine a QWF, the QWF is said to be epistemic.

As an epistemic example, in the fi rst version of their paper (Pusey, Bar-
rett, & Rudolph 2012), PBR consider a classical case of fl ipping a biased 
coin in one of two distinct ways. In the fi rst way the coin has a probability 
p1 of coming up heads while in the second way the probability for heads is 
p2 ≠ p1. If the coin is fl ipped and then observed any number of times, regard-
less of the results obtained, we cannot know for certain by which method 
the coin was fl ipped, although the observed frequency of heads resulting 
could provide a clue, provided we knew that the same preparation was used 
each fl ip. Not knowing this, the result, heads, could have been obtained with 
either mode of fl ipping. Hence we cannot assign uniquely either probability 
p2 or p1 and these probabilities remain epistemic although the unobserved 
method of fl ipping need not be so.

In another epistemic example, used by Reich in her review (Reich 
2012), consider a die prepared in a manner that shows the value 2 with a 
predicted probability of ⅓. We cannot know if the die was prepared in such 
a way that only prime numbers (2, 3, or 5) were allowed to show, or if only 
even numbers (2, 4, or 6) were allowed to show. Each distribution has the 
number 2 in common, so the distributions are conjoint and epistemic.

Classical Physics Epistemics

Let me now give you a simple example of the difference between ontic 
and epistemic reality taken from classical physics. Consider a ball with 
mass m = ½ attached to a spring with spring constant k = 2. Such a system 
is known as a simple harmonic oscillator (SHO)—stretch or compress the 
spring and the SHO “springs” into motion with the ball having momentum 
p and a position x relative to its unstretched or uncompressed 0 position, and 
constant energy E = p² + x². I’ll use a single variable λ to denote the ontic 
pair (p, x). Suppose that someone unknown to us stretches the spring an 
unknown initial distance, x0, within a range 1 ≤ x0 ≤ 2 or in a second range 
3 ≤ x0 ≤4. If you think of a two-dimensional space with orthogonal coordi-
nate axes, p and x, the above energy equation describes a circle contained 
within one of the two sets of concentric thickened circles centered about 
the coordinate origin. Such a space is a simple example of what is called a 
phase space which in general has n dimensions of ps and xs. Every point on 
a circle provides a momentum and position of the ball which, even if not 
observed, hence hidden, are ontic variables. At no time do the different sets 
of circles have common points of overlap. 
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We can think of the thickened circles as disjoint probability distribu-
tions, p1(λ) and p2(λ), of positions and momenta—disjoint because we never 
have any λs in common—the thick circles are concentrically nested (see 
Figure 1). Each λ may be a uniformly distributed (over time) HV satisfy-
ing the SHO energy equation (and the Liouville equation in phase space if 
we didn’t know the energies which govern the temporal evolution of more 
complex distributions involving more SHOs). However, as I said, these 
simple distributions would be disjointed. Hence p1(λ) • p2(λ) = 0 always 
since each λ uniquely determines its own distribution. Consequently if there 
was a state α1 associated with p1(λ) and a state α2 associated with p2(λ), then 
specifi cation of the value of λ would uniquely determine which state, α1 or 
α2, we would be in. We could, although it is clearly not necessary, view the 
λs as HVs and declare the states as ontic since each λ uniquely determines α.

Suppose we now reconsider the initial preparation of the SHO. At 
t = 0, that unknown someone simply decides to stretch the spring a certain 
distance, x0, an amount in the range, 1 ≤ x0 ≤ 3, and lets it go.3 We would 
then fi nd a thick ring band of different energy possibilities in the phase 
plane. Or if the unknown person prepares the SHO in the range 2 ≤ x0 ≤ 4 
and lets it go, we would then fi nd a second thick ring band of possibilities. 
The two circular bands now form overlapping concentrically nested distri-
butions (see Figure 2). Now we have the two distributions, p1(λ) and p2(λ), 
overlapping. Then p1(λ) • p2(λ) ≠ 0 in the overlapping area 2 ≤ x0 ≤ 3 and 
each λ no longer uniquely determines its own state. A specifi cation of λ in 

Figure 1. Disjoint epistemic proba-

bility distributions in phase 

space for a SHO (see text.)

Figure 2. Conjoint (overlapping dark 

grey) epistemic probability 

distributions in phase space 

for a SHO (see text).
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the overlapping probability distribution could indicate we were in either the 
α1 or α2 state and that would make the states epistemic.

PBR’s proof is based on a contradiction that arises between the prob-
ability predictions of quantum physics when QWFs are considered to be on-
tological (their respective HV probability distributions are disjoint) and the 
same predictions based on epistemic QWFs (their respective HV probabil-
ity distributions are conjoint). They consider this contradiction in a series of 
ever increasingly complex arguments that includes a calculation eventually 
involving n identically prepared and uncorrelated independent states as well 
as noise considerations. Accordingly, whenever QWFs of observables are 
governed by disjoint distributions of ontic HVs, these QWFs are uniquely 
determined and must be ontic even though their respective distributions are 
epistemic (similar to arguments made in statistical mechanics). Thus if the 
states of a quantum system are specifi ed by QWFs which are determined by 
disjoint epistemic distributions over ontic variables, the QWFs are as ontic 
or real as any observable in physics. On the other hand, if such distributions 
governing these QWFs are conjoint, that is they have values of ontic HVs 
in common, the QWFs are epistemic or merely represent knowledge (prob-
abilities) of observables in question.

Simple Quantum Physics Ontology and Epistemology

Before we look at PBR’s argument, I want to explain a little more about 
why overlapping probability distributions lead to a contradiction in the 
quantum physical predictions. Consider for simplicity a top-hat probability 
distribution, pψ(λ). We shall be looking at two special cases ψ = N and ψ = S 
(you can think of these states as polar opposites) associated with orthogonal 
QWFs, N and S, respectively (that is <N|S> = 0), which have a common 
overlapping area of an HV, λ (λ could also indicate a set of HVs). A com-
mon λ means simply that both pS(λ) ≠ 0 and pN(λ) ≠ 0 as shown in Figure 3. 

First Case: Now consider the probability of obtaining a measurement 
of N and suppose that this probability depends only on the HV λ. We can 
write it as a conditional (Bayesian) probability, M(N|λ). To obtain the total 
probability, P(N|ψ), that is to get the probability for result N for any QWF, 
ψ, we must calculate P(N|ψ) = ∫M(N|λ)pψ(λ)dλ. That is, we multiply the 
probability of obtaining a result for a given λ by the distribution function, 
pψ(λ), specifi c to the chosen QWF, ψ, and integrate over all λ. From the 
Born Rule of quantum physics, P(N|ψ) = <|N> <N|ψ>. 
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Second Case: Next consider a measurement of S which is also given 
by a probability, M(S|λ), which is also clearly dependent only on HV λ. 
Now suppose we wish to obtain the probability of getting the result, S. To 
obtain the total probability P(S|ψ) for getting the result S, we must have
P(S|ψ) = ∫M(S|λ)pψ(λ)dλ. And again from the Born Rule: P(S|ψ) = <ψ|S> <S|ψ>. 

Now if M(S|λ) and M(N|λ) are the only probabilities for values ob-
tained by measurements, and since there are only two such values possible, 
then clearly M(S|λ) + M(N|λ) = 1. There can be no other result possible and 
this must hold for every λ value. In plain language, specifying λ must lead to 
unity probability when all possible results of a measurement are taken into 
account with ontic variable λ specifi ed. For example, λ could be a simple 
option, λq or λd, for an unseen biased coin—use a quarter or use a dime. Us-
ing a quarter, suppose M(H|λq) = .25 and M(T|λq) = .75, or using a dime sup-
pose M(H|λd) = .65 and M(T|λd) = .35. In each HV option, dependent on the 
value of λ, head (H) and tail (T) are clearly orthogonal results after a toss of 
the coin. Again, as in the other coin example, after many such observations 
we could only guess the HV of the coin was a dime or a quarter because of 
the relative frequencies of heads to tails appearing provided we knew that 
just one type of coin was used each time. Otherwise we would never know 
which coin was used.

However, as simple as is this N or S case, it leads to a contradiction 

Figure 3. Conjoint top hat (overlapping) 

epistemic probability distribu-

tions for orthogonal quantum 

physics states.

Figure 4. Disjoint epistemic probability 

distributions for orthogonal 

quantum physics states leading 

to ontic states |N> and |S>.
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with the Born Rule of quantum physics that arises when you put ψ = S in 
the First Case, and ψ = N in the Second Case. Since S and N are orthogo-
nal (they cannot both occur), <S|N> = 0. Hence in the First Case we get 
<|N> <N|ψ> = <S|N> <N|S> = P(N|S) = ∫M(N|λ)pS(λ)dλ = 0, and in the 
Second Case, <|S> <S|ψ> = <N|S> <S|N> = P(S|N) = òM(S|λ)pN(λ)dλ = 
0. If these integrals are to be zero, then the integrands have to be zero for 
every value of λ because both M(N|λ) and M(S|λ) as well as pS(λ) and pN(λ) 
are positive functions. Therefore, in particular, these integrands have to be 
zero in the overlapping region. But given that both pS(λ) ≠ 0 and pN(λ) ≠ 
0 in the overlapping region, that is we have overlapping distributions in 
λ space (see Figure 3), these results can only occur if both M(N|λ) = 0 
and M(S|λ) = 0, which contradicts M(S|λ) + M(N|λ) = 1. 

Hence for this simple orthonormal case, we cannot have both pS(λ) and 
pN(λ) possessing nonzero values for any common λ. In brief, they cannot 
have overlapping hidden variables. This means that a specifi cation of λ 
leads to a unique ψ, either S or N (as in the quarter/dime example above), 
and we can therefore take it that pS(λ)pN(λ) = 0, so in both cases either pS(λ) 
or pN(λ) must be zero. PBR might call this a necessary step to proving that 
a QWF is an ontological function, but this proof only includes orthogonal 
QWFs, |N> and |S> as indicated in Figure 4. To be both necessary and suffi -
cient one would need to show that the probability distribution pN(λ) for |N> 
and any other probability distribution pψ(λ) for a QWF |ψ> cannot have any 
overlap even if <N|ψ> ≠ 0.

More Complex Quantum Physics Ontology and Epistemology 

In the above case we only considered orthogonal QWFs, N and S, and found 
them to be ontic. Can we make the argument that ψ is real in any case 
including nonorthogonal situations? To fully answer the query in the title 
of this review, we would need to look at the case when possible quantum 
states, α and β, are not orthogonal. One might think that since two such 
QWFs, |α> and |β>, do overlap, i.e. < β|α> ≠ 0, one might fi nd no contradic-
tion in having both pα(λ) ≠ 0 and pβ(λ) ≠ 0. Hence both α and β could be 
epistemic and still satisfy the Born Rule of quantum physics.

PBR dispel that possibility by fi rst considering nonorthogonal states of 
the same simple system as above that is prepared with compass directions 
|N> or |E>, where |E> = (|N> + |S>) / √2, |W> = (|N> − |S>) / √2. Here we 
have <N|S> = <E|W> = 0, respectively orthogonal, but <N|E> = 1/√2, hence 
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N and E are not orthogonal.4 We shall again assume that the QWF, |ψ> 
(either |N> or |E>), is dependent on an HV distribution p(λ), similar to 
what we did in the orthogonal case above. One can recognize these “direc-
tional” states as spinors, i.e. spin ½ states, wherein |N> means spin up in the 
z direction, |S> means spin down in the z direction, |E> means spin up in the 
x direction, and |W> means spin down in the x direction.

The system is to be prepared in one of two ways such that one prepara-
tion produces |N> with unity probability P(N|N) = ∫M(N|λ)pN(λ)dλ = 1, aris-
ing from an epistemic pN(λ) distribution, while a second kind of preparation 
produces |E> with unity probability, P(E|E) = ∫M(E|λ)pE(λ)dλ = 1, arising 
from epistemic distribution pE(λ). The aim: If a specifi cation of λ yields a 
specifi c QWF, |ψ>, orthogonal or not to any other QWF, |φ>, then |ψ> must 
be ontic and therefore an objective real “thing” “out there” independent of 
any observer. So, accordingly, in the case involving states |N> and |E>, in 
spite of the nonorthogonality of these states, the two distributions pN(λ) and 
pE(λ) must be disjoint, pN(λ)pE(λ) = 0, as shown in Figure 4, only substitute 
E for S.5 

On the other hand, if λ lies within a region where |N> and |E> have 
conjoint distributions, i.e. pN(λ) and pE(λ) overlap so that pN(λ)pE(λ) ≠ 0, 
then |ψ> cannot be ontic and must be epistemic as shown in Figure 3 (again 
substitute E for S).6 In brief, an epistemic |ψ> results in a contradiction 
with the prediction of quantum physics just as we saw in the above N and 
S orthogonal case.

To clarify their argument, I will follow PBR with a slight change of 
notation. PBR have us consider a quantum physical situation in which two 
such identical, but separate, preparations |ψ1> and |ψ2> are independently 
made using HVs, 1 and 2, wherein both HVs lie within identical HV 
spaces; we have essentially two copies of the same hidden variable space. 
Consequently these preparations result in the uncorrelated joint quantum 
state |1>|2>, since they are produced from independent HVs. It is impor-
tant to realize that PBR assume that both 1 and 2 lie within correspond-
ing, respectively, identical HV spaces. Thus each separate space of HVs 
contains an identical range, ρ ≥ 0, over which probability distributions are 
conjoint. Consequently each preparation produces its own corresponding 
HV i, resulting in identical overlapping probability distributions of 
|N> or |E>, wherein, pN(1)pE(1) ≠ 0 and pN(2)pE(2) ≠ 0, provided 
1 lies within the overlapping range, ρ, and 2 lies within the same 
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correspondingly identical overlapping range, ρ, as shown in Figure 5.
That is, both systems are prepared in such a manner that we cannot 

uniquely determine |N> or |E>. PBR also assume the probability distribu-
tion functions, pN(λi) and pE(λi), are the same for i = 1 or 2. Since these are 
independent preparations, both pψ1(λ1) ≠ 0 and pψ2(λ2) ≠ 0 whenever λ1 and 
λ2 are each found in the same range, ρ. In Figure 5 we are essentially dupli-
cating the scenario shown in Figure 3 for each copy.

So after preparing the joint system with both λ1 and λ2 in their corre-
sponding conjoint ρ ranges, we obtain the following epistemic (possible) 
results for |ψ1>|ψ2>: |N>|N> or |N>|E> or |E>|N> or |E>|E>. All we need 
now is to specify the basis for making a measurement of the joint system. 
Suppose now that the two systems are brought together and measured using 
(projected onto) the following orthonormal entangled base states:

  |1> = (|N>|S> + |S>|N>) / √2, 
  |2> = (|N>|W> + |S>|E>) / √2, 
  |3> = (|E>|S> + |W>|N>) / √2, and
  |4> = (|E>|W> + |W>|E>) / √2.

Figure 5. Conjoint top hat (overlapping) epistemic probability distributions for 

two identical systems with non-orthogonal quantum physics states.
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These four states are maximally entangled and orthogonal (<i|j> = 0, 
unless i = j, and then <i|i> = 1). Consequently the probability for obtaining 
a result, i, P(i|ψ1ψ2), given that the joint wave function, |ψ1ψ2> = |ψ1>|ψ2>, 
can be expressed in a similar manner as for the simple case above. Follow-
ing the above example and the Born Rule, we have for the joint probability, 
P(i|ψ1ψ2) = <ψ1ψ2|i> <i|ψ1ψ2> = ∫∫M(i|λ1,λ2)pψ1(λ1)pψ2(λ2)dλ1dλ2, where the 
probability of obtaining a joint measurement, M, of state |i> now depends 
on two HVs, λ1 and λ2, and we write it accordingly as a conditional (Bayes-
ian) probability, M(i|λ1,λ2). Consequently, we cover all of our four bases 
and fi nd for any chosen pair of HVs, λ1 and λ2, M(1|λ1,λ2) + M(2|λ1,λ2) + 
M(3|λ1,λ2) + M(4|λ1,λ2) = 1. This says that the probabilities of obtaining a 
result for i, 1 ≤ i ≤ 4, now depends on both given λ1 and λ2 values. Change 
those values and the individual M(i|λ1,λ2) may change, as in the case of the 
quarter and dime; but they will always sum to unity regardless of whether or 
not the chosen values of λ1 and λ2 fall within the ranges of ρ ≥ 0.

The question is: What are the probabilities of the results of measure-
ment using (projecting onto) these entangled base states according to the 
Born Rule of quantum physics? It isn’t too diffi cult to see that there are 
four cases in which we get predictions of zero probabilities—the result of a 
measurement will be to not fi nd a specifi c result as shown in Figure 6 (based 
on PBR’s Figure 2).

Figure 6. Experimental preparations and measurements of ontic 

 hidden variables possibilities.
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As we see next, this fact leads to a contradiction if λ1 and λ2 fall within 
the ranges of ρ, thus producing non-vanishing probability distributions. It is 
here where the independence and conjointness of the two individually over-
lapping probability distributions, pψ1(λ1)pψ2(λ2) ≠ 0, play their roles.

In the fi rst case, P(1|NN) = <NN|1> <1|NN> = 0, as can be seen by in-
spection. Therefore, ∫∫M(1|λ1,λ2)pN(λ1)pN(λ2)dλ1dλ2 must be 0. But since λ1 
and λ2 have non-vanishing probability distributions, pN(λ1)pN(λ2) ≠ 0, it fol-
lows that M(1|λ1,λ2) = 0. A similar line of reasoning applies to P(2|NE) = 
<NE|2> <2|NE> = 0, where pN(λ1)pE(λ2) ≠ 0, and for P(3|EN) = <EN|3> 
<3|EN> = 0, where pE(λ1)pN(λ2) ≠ 0, and fi nally for P(4|EE) = <EE|4> 
<4|EE> = 0, where pE(λ1)pE(λ2) ≠ 0. Remember we are assuming that 
pψ1(λ1)pψ2(λ2) ≠ 0, corresponding to λ1 and λ2 falling within the ranges of 
ρ and these are the only cases of concern.

Therefore we would conclude for these particular values of λ1 and λ2, 
within the ranges of ρ where pψ1(λ1)pψ2(λ2) ≠ 0, in each of the vanishing 
probabilities, P(i|ψ1ψ2) = 0, we must have M(1|λ1,λ2) = 0, M(2|λ1,λ2) = 0,
M(3|λ1,λ2) = 0, and M(4|λ1,λ2) = 0, which contradicts the equation: M(1|λ1,λ2) 
+ M(2|λ1,λ2) + M(3|λ1,λ2) + M(4|λ1,λ2) = 1, which is valid for all values of 
λ1 and λ2. The only way out of the contradiction is, of course, to deny that 
the non-vanishing probability distributions, where λ1 and λ2 are within the 
supported “overlapping” ranges of values of ρ, pψ1(λ1)pψ2(λ2) ≠ 0, can ever 
occur. Thus P(1|NN) = 0 implies that pN(λ1)pN(λ2) = 0 , P(2|NE) = 0 implies 
that pN(λ1)pE(λ2) = 0, P(3|EN) = 0 implies that pE(λ1)pN(λ2) = 0, and P(4|EE) = 0 
implies that pE(λ1)pE(λ2) = 0. In each case it’s necessary and suffi cient that 
only one of the pairs of pψi(λi)s need vanish to rule out any overlap and thus 
rule in that all such ψis are ontological. Having either pψi (λi)vanish means 
pψ1 (λ1)pψ2 (λ2) = 0, and consequently since both ψ1 and ψ2 are either N or E 
then the condition pψ1(λ1)pψ2(λ2) ≠ 0 is equally ruled out for each ψi. Thus for 
any pair of nonorthogonal ψis, the Born Rule of quantum physics cannot be 
satisfi ed, if their respective HV probabilities overlap.

Simple Illustration of the BPR Theorem 
for Two Non-Orthogonal States

Of course, it could be that for most values of λ1 and λ2, outside the range of 
ρ, or indeed if ρ = 0, the condition pψ1(λ1)pψ2(λ2) = 0 need not arise to have 
P(i|ψ1ψ2) = 0, and for these cases no contradiction arises. To further clarify 
the argument consider Figure 7, where I show a possible set of conditional 



732 Book Reviews

measurement probability distributions, M(i|λ1,λ2), consistent with nonover-
lapping top-hat probability distributions shown in Figure 5 with ρ = 0. Each 
conditional measurement probability distribution consists of a quilt of four 
patches with M(i|λ1,λ2) being constant in each patch and iÎ(1,4). The dark-
est patch has M(i|λ1,λ2) = 0, the light grey patches have M(i|λ1,λ2) = .25, and 
the nearly white patch has M(i|λ1,λ2) = .50. One can see by inspection that 
M(1|λ1,λ2) + M(2|λ1,λ2) + M(3|λ1,λ2) + M(4|λ1,λ2) = 1 for any pair of values, 
(λ1,λ2), in the quilt. So long as ρ = 0, we never see any contradiction arising 
with the Born Rule because the disjoint probability distributions, pψ1(λ1)and 
pψ2(λ2), are consistently defi ned within the same boundaries as the quilted 
measurement probabilities, M(i|λ1,λ2). It is only when pψ1(λ1) and pψ2(λ2) 
exceed those quilted boundaries that contradictions arise as indicated next.

If we have ρ > 0, then these measurement probabilities, M(i|λ1,λ2), lead 
to contradiction with the Born Rule. To see this in each of the four cases, let 
us again consider our conjoint top-hat probability distributions, as shown in 
Figure 5 such that, pN(λ1) = pN(λ2) = 1/(1+ρ/2) in the ρ-extended range, when 

Figure 7. Three dimensional views of quilted, stepped, conditional measure-
ment probabilities, M(i|λ

1
,λ

2
), consistent with disjoint top hat probability distri-

butions for two identical systems with non-orthogonal quantum physics states.
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0 ≤ λ1 ≤ (1+ρ/2) and 0 ≤ λ2 ≤ (1+ρ/2), respectively, and 0 elsewhere. And 
similarly for pE(λ1) = pE(λ2) = 1/(1+ρ/2) in the ρ-extended ranges, (1−ρ/2) 
≤ λ1 ≤ 2 and (1−ρ/2) ≤ λ2 ≤ 2, respectively, and 0 elsewhere. Consequently 
we have the normalized probabilities, ∫pN(λi)dλi = ∫pE(λi)dλi = 1, for i = 1,2.

Case 1. Let us now examine the fi rst case where P(1|NN) = <NN|1> 
<1|NN> = ∫∫M(1|λ1,λ2)pN(λ1)pN(λ2)dλ1dλ2 = 0, according to the Born Rule. 
There is no problem for 0 ≤ λ1 ≤ 1 and 0 ≤ λ2 ≤ 1; we simply have on this 
patch of the λ-quilt, M(1|λ1,λ2) = 0. However, in the overlapping ranges, 
1 < λ1 ≤ (1+ρ/2) and 1 < λ2 ≤ (1+ρ/2), M(1|λ1,λ2) = .5, and consequently 
P(1|NN) = ρ2/[8(1+ρ/2)2] ≠ 0, in contradiction of the Born Rule.

Case 2. A similar line of reasoning applies for P(2|NE) = <NE|2> 
<2|NE> = ∫∫M(2|λ1,λ2)pN(λ1)pE(λ2)dλ1dλ2 = 0, according to the Born Rule. 
Here we again have no problem for 0 ≤ λ1 ≤ 1 and 1 ≤ λ2 ≤ 2. On this patch 
of the λ-quilt, M(2|λ1,λ2) = 0. However, for 1 ≤ λ1 ≤ (1+ρ/2) and (1−ρ/2) ≤ 
λ2 ≤ 1, we have M(2|λ1,λ2) = .5 and consequently P(2|NE) = ρ2/[8(1+ρ/2)2] 
≠ 0, as in the fi rst case, in contradiction of the Born Rule.

Case 3. A similar line of reasoning applies for P(3|EN) = <EN|3> 
<3|EN> = ∫∫M(3|λ1,λ2)pE(λ1)pN(λ2)dλ1dλ2 = 0, according to the Born Rule. 
Here we again have no problem for 1 ≤ λ1 ≤ 2 and 0 ≤ λ2 ≤1. On this patch 
of the λ-quilt, M(3|λ1,λ2) = 0. However for (1−ρ/2) ≤ λ1 ≤ 1 and 1 ≤ λ2 ≤ 
(1+ρ/2), we have M(3|λ1,λ2) = .5 and consequently P(3|EN) = ρ2/[8(1+ρ/2)2] 
≠ 0, as in the fi rst case, in contradiction of the Born Rule.

Case 4. A similar line of reasoning applies for P(4|EE) = <EE|4> 
<4|EE> = ∫∫M(4|λ1,λ2)pE(λ1)pE(λ2)dλ1dλ2 = 0, according to the Born Rule. 
Here we again have no problem for 1≤ λ1 ≤ 2 and 1≤ λ2 ≤ 2. On this patch 
of the λ-quilt, M(4|λ1,λ22) = 0. However for (1−ρ/2) ≤ λ1 ≤ 1 and (1−ρ/2) ≤ 
λ2 ≤ 1,we have M(4|λ1,λ2) = .5 and consequently P(4|EE) = ρ2/[8(1+ρ/2)2] ≠ 
0, as in the fi rst case, in contradiction of the Born Rule.

Of course, in each case, in the limit where ρ → 0, no contradiction 
arises and the correct results for the measurement probabilities are obtained. 
Thus, for example, from the top right-hand corner of Figure 7 dealing with 
measurements projected onto the |2> state we fi nd: 

P(2|NE) = <NE|2> <2|NE> = ∫∫M(2|λ1,λ2)pN(λ1)pE(λ2)dλ1dλ2 = 0, 
P(2|NN) = <NN|2> <2|NN> = ∫∫M(2|λ1,λ2)pN(λ1)pN(λ2)dλ1dλ2 = .25, 
P(2|EN) = <EN|2> <2|EN> = ∫∫M(2|λ1,λ2)pE(λ11)pN(λ2)dλ1dλ2 = .50, and 
P(2|EE) = <EE|2> <2|EE> = ∫∫M(2|λ1,λ2)pE(λ1)pE(λ2)dλ1dλ2 = .25, 
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all consistent with the Born Rule leading to unity probability when summed. 
Similar results follow for the other measurements projected onto the |i> 
state, with i = 1, 3, and 4. 

Discussion

To prove or disprove whether or not any general QWF |α> is ontic is 
quite an accomplishment even for a limited HV, but a clever approach as 
taken by PBR. To establish that a given |α> is ontic, you have to construct 
an argument showing that for any other QWF, |β>, even when <β|α> ≠ 0, 
it is always possible to fi nd such a contradiction as shown above. They 
use n identically prepared and uncorrelated independent QWFs (I looked 
at n = 2) generating a QWF, |Ψ> = |ψ1>|ψ2> . . . |ψn>, where each QWF is 
either |α> or |β>. |Ψ> is projected onto an entangled QWF measuring device 
(a combination of various gates and other devices used in quantum comput-
ers called a measurement circuit) that jointly measures the n systems in such 
a manner that there is always at least one of the 2n QWFs predicted with 
zero probability. Indeed this is a very clever idea as one can nearly always 
show7 that |Ψ>, being a product of independent QWFs, must consist of in-
dependent ontic states.

On the other hand, if a measurement of a state with zero probability 
ever occurs (e.g., corresponding to an EN measurement when a not-EN 
state was prepared, as indicated in Figure 6), indicating a violation of the 
predicted quantum probabilities, does that indicate Einstein was right after 
all and quantum physics is ontologically incomplete?8 

Could this be proven experimentally? All one would need to do is show 
that the condition of never fi nding a zero probability case in any the 2n pos-
sible cases would possibly do it. Suppose that indeed one were to fi nd all 
(measurement) projections onto such entangled base states devices never 
occurring with zero probability.9 According to PBR the epistemic nature 
of QWFs in violation of quantum physics would be established. Einstein 
would emerge victorious and we would need a new physics beyond quan-
tum physics.

In summary we have a logical proof here: For two or more QWFs the 
Born Rule (TBR) implies disjoint HV probability distributions (DPD), 
TBR → DPD. However DPD does not necessarily imply the Born Rule 
~(DPD → TBR). They are not equivalent. The important statement of PBR 
is that conjoint probability distributions (CPD) violate the Born Rule, 
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(CPD → ~TBR). That means CPD make the quantum state unknown and 
hence epistemological. CPD mean the quantum state is not fi xed by a deter-
mination of the HV. A given HV will produce more than one quantum state 
possibility—hence the quantum state is epistemological. Since ~CPD is the 
same as DPD and CPD implies a negation of the Born Rule, CPD → ~TBR; 
reversing the logic we get TBR → ~CPD so TBR → DPD. 

Let me add a few more comments of my own here. I believe that until the 
ontology/epistemology issue is fully resolved (although readers may believe 
it already resolved after reading this review), we still have the “measurement 
problem” that stimulated such considerations as given by PBR, Bell, Bohm, 
and many others. We also still have the nonlocality issue to deal with. Per-
haps PBR can resolve this issue. Ontologically speaking, what does it mean 
to have nonlocal infl uences? What does it mean to have an observer effect 
(collapse of the QWF)? Does the PBR solution resolve these problems? 

Consider the effect of observation on an ontic QWF. Does a human 
being alter the QWF simply by making an observation? If the QWF is on-
tic then we have a real observer effect—observation (including nonlocal) 
indeed alters the QWF and therefore reality. That would mean that mind 
is inextricably tied into matter; they are truly entangled, and such a fi nding 
could lead to breaking discoveries in the study of consciousness. On the 
other hand, if the QWF proves to be epistemic in violation of the Born Prob-
ability Rule, observation is simply the usage of the Bayesian approach to 
probabilities wherein new information simply changes what we know, but 
leaves reality unscathed—at least what we mean by ontic reality. I hope that 
PBR and others continue this line of research. The next frontier may indeed 
not be space but will be the mind.

Notes

1 Indeed Einstein did make this conclusion based on the EPR argument. 
However, it is not a conclusion of Bell’s theorem and certainly not Ein-
stein’s conclusion based on Bell’s work because he was dead at the time. 
In fact, Bell’s theorem rather stymies this line of argument, since it says 
that you will still have nonlocal infl uences even if the wave function is 
epistemic, so this move does not solve the problem of nonlocality.

2 One may need to allow for the fact that measurements might be funda-
mentally noisy or stochastic and demand only that HVs specify probabili-
ties for any measurement outcome.
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3 In this SHO example (with m = ½ and k = 2), assuming t = 0, the spring is 
stretched to a distance, √E, we get x = (√E)cos(2t) and p = (−√E)sin(2t). 
The point in the phase plane rotates clockwise around the circle com-
pleting the cycle in the period of π. The probability density is simply a 
constant, dP/dt = 1/π, for all such circles regardless of the energy. Indeed 
that’s why spring clocks work.

4 This sounds peculiar since clearly the directions are perpendicular. How-
ever, perpendicular in space does not necessarily mean the same thing as 
orthogonal in quantum physics. For those who know a little quantum phys-
ics: Two quantum states α and β are orthogonal if and only if <α|β> = 0.

5 That is, there is no overlap of these probability distributions, so we have
 pN(λ)pE(λ) = 0. So this means either pN(λ) = 0 or pE(λ) = 0 for all λ.
6 Here there is an overlap, so pN(λ)pE(λ) ≠ 0. So that means both pN(λ) ≠ 0 

and pE(λ) ≠ 0 for λ within the overlap region.
7 PBR also carry out an error analysis to complete their proof.
8 Such a violation would tell us that it is possible, i.e. not in confl ict with 

experimental results, that the wave function is epistemic.
9 Matt Leifer in an email to me pointed out that from any epistemic HV 

theory, you can always construct one that is ontological and gives exactly 
the same predictions. Such an argument is given in M. Schlosshauer and 
A. Fine, “Implications of the Pusey–Barrett–Rudolph no-go theorem,” 
http://arxiv.org/abs/1203.4779. Consequently Leifer doesn’t think it is 
possible to establish that the QWF is epistemic purely by experiment.
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